
Searching in encrypted data

Richard Brinkman

Composition of the Graduation Committee:

Prof. Dr. Ir. A.J. Mouthaan, Universiteit Twente (secretary)
Prof. Dr. W. Jonker (promotor)
Prof. Dr. P. H. Hartel (promotor)
Prof. Dr. P.M.G. Apers, Universiteit Twente
Dr. S. Etalle, Universiteit Twente
Prof. Dr. Ir. B. Preneel, Katholieke Universiteit Leuven, Belgium
Prof. Dr. B.P.F. Jacobs, Radboud Universiteit, Nijmegen
Prof. Dr. Ir. H.C.A. Van Tilborg, Technische Universiteit Eindhoven
Prof. Dr. S. De Capitani di Vimercati, Università degli Studi di

Milano, Italy
Prof. Dr. J. Domingo-Ferrer, Universitat Rovira i Virgili, Spain

This research is conducted within the Secure Meta Data project
supported by Philips Research and the University of Twente.

Group of Distributed and Embedded Systems,
P.O. Box 217, 7500 AE Enschede, The Netherlands.

The work in this thesis has been carried out under the aus-
pices of the research school IPA (Institute for Programming
research and Algorithmics).

Keywords: encryption, searching, database encryption.
Printed by Ipskamp PrintPartners, Enschede, The Netherlands.
ISSN 1381-3617 (CTIT Ph.D.-thesis Series No. 07-98)
ISBN 978-90-365-2488-9
IPA 2007-09

Copyright c© 2007 Richard Brinkman, Enschede, The Netherlands.
All rights reserved. No part of this book may be reproduced or transmitted, in
any form or by any means, electronic or mechanical, including photocopying,
microfilming, and recording, or by any information storage or retrieval system,
without the prior written permission of the author.

SEARCHING IN ENCRYPTED DATA

DISSERTATION

to obtain
the doctor’s degree at the University of Twente,

on the authority of the rector magnificus,
prof. dr. W.H.M. Zijm,

on account of the decision of the graduation committee,
to be publicly defended

on Friday, June 1, 2007 at 13:15

by

Richard Brinkman

born on 27 October 1978,

in Ede, The Netherlands

This dissertation is approved by:

Prof. Dr. W. Jonker (promotor) and
Prof. Dr. P. H. Hartel (promotor)

Abstract

This PhD thesis addresses the problem of securing data stored on an untrusted
server. There are situations in which personal data or other sensitive informa-
tion has to be stored on an untrusted system. For instance, if someone else has
a cheaper means to store large amounts of data or offers a better network con-
nectivity, it is beneficial to outsource your data to that system. In the literature
we find different approaches to secure data. Some approaches use access control
while others use encryption. In this thesis we focus on the latter approach. We
do not assume that the storage system itself is secure.

In this PhD thesis we envisage the following scenario. There exists a server
with a large storage capacity and a large bandwidth. This server is considered
honest but curious. This means that on the one hand we trust that it stores
the data correctly and follows the protocols. On the other hand it cannot
be trusted to refuse access to unauthorised people. Since the security of the
system itself cannot be trusted, the data should be stored in encrypted form
at the server. Authorised people should still be able to query the encrypted
database efficiently. The goal of the search process is to perform the majority of
workload at the server, allowing low power devices to connect to the database.

Three solutions are presented. The first solution uses a trapdoor mechanism.
The data is encrypted in such a way that it is possible to search for a certain
word. The server is given a key that is specific for that particular word. With
this key the server is able to scan the encrypted text and find occurrences of
the word. Although the server does not know which word it is being asked for,
it will learn the location where the word can be found, if it can be found at all.
The server does not learn anything else about the text.

The second solution uses secret sharing. The text to be stored is split in two
(or more) shares. Both shares are needed to reconstruct the original text. The
text is split in such a way that it is possible for the data owner to regenerate
his own share, so that he does not actually have to store it. The other share

v

vi ABSTRACT

is stored at the server. The search process consists of an interactive protocol
between the data owner and the server. The server does not learn the location
where the answer can be found, as in the first solution, but the client has more
work to do.

A third category of solutions uses homomorphic encryption functions. Ho-
momorphic encryption makes it possible to perform simple operations like ad-
dition and multiplication directly on the encrypted data, without the need to
decrypt it first. We explore possibilities to use this type of encryption functions
to search in encrypted data.

The thesis ends with a storage technique, based on the principles of a lucky
dip, in which the security not solely relies on the computational complexity,
like in standard cryptography, but also on information theoretic security. The
information will be torn into shreds by using secret sharing before they are are
mixed with similar shreds from other documents. The security of the lucky
dip containing all those shreds is based on the fact that many combinations of
shreds result in correctly readable texts. The number of combinations increases
dramatically with the number of shreds. Enumerating all possible combinations
is not feasible in practice. Even if we assume that an attacker has unlimited
time or has unlimited computational power, the attacker still does not have
certainty which messages are stored in the lucky dip. Although the attacker
finds all the stored messages, he also ‘finds’ almost every other text imaginable.
The attacker does not know which combination results in a readable text by
accident and which one is stored deliberately.

Summarising, we offer three approaches for a client to query a database such
that the server neither learns the query nor the stored data:

• An encrypted XML text can be searched efficiently for the occurrences of
a word. The search takes place entirely at the server. The server learns
only the locations of the word, if it occurs at all, but nothing more about
the text or the search word.

• Using a secure protocol between the server and the client and data repre-
sented as shared polynomials, we can secure the data, the query as well
as the answer, at the cost of more work for the client.

• The simple operations that homomorphic encryption can perform on en-
crypted data, are sufficient to search the encrypted data.

Samenvatting

Dit proefschrift behandelt het probleem van het beveiligen van gegevens die
op een niet vertrouwd systeem moeten worden opgeslagen. Er zijn situaties
denkbaar waarin persoonlijke data of anderszins gevoelige informatie moeten
worden opgeslagen op een niet-vertrouwd systeem. Als iemand bijvoorbeeld een
manier aanbiedt om goedkoper en beter bereikbaar grote hoeveelheden data te
bewaren, is het aanbevelenswaardig om de data opslag uit te besteden. In de
literatuur vinden we verschillende aanpakken om gegevens te beveiligen. Som-
mige gebruiken toegangscontrole, terwijl andere encryptie gebruiken. In dit
proefschrift zullen we de nadruk leggen op de laatste aanpak. We zullen niet
vertrouwen op de veiligheid van het opslagsysteem zelf.

In dit proefschrift hebben we steeds het volgende scenario voor ogen. Er
bestaat een server met een grote opslagcapaciteit en een grote bandbreedte. We
beschouwen deze server als eerlijk maar nieuwsgierig. Dit houdt in dat we er
aan de ene kant vanuit gaan dat de server de data correct bewaart en zich aan
de regels van het protocol houdt, maar aan de andere kant gaan we er niet
vanuit dat ongeautoriseerde personen de toegang wordt ontzegd. Aangezien de
veiligheid van het systeem zelf niet vertrouwd wordt, moet de data in geëncrypte
vorm op de server worden opgeslagen. Geautoriseerde personen moeten nog
steeds in staat zijn om op een efficiënte wijze de database te bevragen. Het
doel is om het zoekproces zoveel mogelijk op de server uit te voeren, zodat
het voor simpele mobiele apparaten mogelijk wordt om met de database te
communiceren.

Er worden drie oplossingen gepresenteerd. De eerste oplossing gebruikt een
zogenaamde achterdeur. De data wordt op een zodanige manier vercijferd dat
het mogelijk is om op een bepaald woord te zoeken. De server krijgt dan een
sleutel die specifiek is voor dit woord. Deze sleutel stelt de server in staat om
een vercijferde tekst te doorzoeken naar het vóórkomen van het woord. Hoewel
de server dus niet weet naar welk woord er gezocht wordt, leert hij wel waar

vii

viii SAMENVATTING

het woord voorkomt of niet, als het al voorkomt. Van de rest van de vercijferde
tekst leert hij niets.

De tweede oplossing gebruikt ‘secret sharing’. De te bewaren tekst wordt
gesplitst in twee (of meer) delen. Beide delen zijn noodzakelijk om de originele
tekst te reconstrueren. De opdeling van de tekst is zodanig dat de eigenaar van
de data zijn eigen deel kan hergenereren, waardoor hij dit niet hoeft te bewaren.
Het andere deel wordt op de server opgeslagen. Het zoekproces is een interactief
protocol tussen de data eigenaar en de server. De server leert niet de locatie
waar het antwoord staat, zoals het geval is in de eerste oplossing, maar de client
heeft wel meer werk te doen.

Een derde categorie oplossingen gebruikt homomorfe encryptie functies. Ho-
momorfe encryptie staat ons toe om sommige simpele operaties als optellen en
vermenigvuldigen direct op de geëncrypte data toe te passen, zonder daarbij
de data eerst te hoeven decrypten. We maken een inventarisatie in hoeverre
deze categorie encryptie functies gebruikt kan als methode om te zoeken in
geëncrypte data.

Het proefschrift wordt afgesloten met een opslagtechniek dat gebaseerd is op
een grabbelton, waarbij de veiligheid niet alleen berust op de computationele
complexiteit, zoals bij normale cryptografie, maar ook op informatie theore-
tische veiligheid. De informatie wordt door middel van ‘secret sharing’ in snip-
pers verscheurd alvorens ze worden gemixt met soortgelijke snippers van andere
documenten. De veiligheid van de grabbelton die al deze snippers bevat, berust
op het feit dat er zeer veel snippercombinaties zijn die een goed leesbare tekst
opleveren. Het aantal combinaties neemt drastisch toe met het aantal snip-
pers. Het aflopen van alle mogelijke combinaties is in de praktijk niet mogelijk.
Maar zelfs als we aannemen dat een aanvaller de beschikking heeft over oneindig
veel tijd of over een oneindige rekenkracht, dan nog kan hij niet met zekerheid
zeggen welke berichten er in de grabbelton zitten. De aanvaller vindt weliswaar
alle berichten die zijn opgeslagen, maar hij ‘vindt’ ook zo’n beetje iedere andere
denkbare tekst. De aanvaller weet niet welke combinatie toevallig een leesbare
tekst oplevert en welke er bewust is ingestopt.

Samengevat bieden we drie technieken waarmee een gebruiker de database
kan bevragen op een zodanige manier dat de server de vraag noch de opgeslagen
data leert.

• Een versleuteld XML bestand kan efficiënt doorzocht worden naar het
vóórkomen van een specifiek woord. Het zoekproces wordt volledig op
de server uitgevoerd. De server leert enkel de locaties waar het woord
voorkomt, als het al voorkomt. De server leert verder niets over de tekst

SAMENVATTING ix

of over het zoekwoord.

• Gebruik makend van een beveiligd protocol tussen de server en de client
en een manier om de gegevens te splitsen in meerdere polynomen, zijn we
in staat om de gegevens, de vraag, en het antwoord te beveiligen. Het
kost alleen wel wat meer werk voor de client.

• De simpele operaties die homomorfe encryptie kan toepassen op de ver-
cijferde gegevens, zijn voldoende om te kunnen zoeken in de vercijferde
gegevens.

Acknowledgements

Researchers, and especially PhD students, are often regarded as individualists
working day and night in their ivory tower. Having been a PhD student for four
years myself, I have to contradict this. My tower was not made of ivory and I
did not spend all nights there on my own. This thesis could not have been made
without the help of others. Therefore I would like to thank everybody who has
contributed to this thesis.

I will start with my daily supervisors. I started with two supervisors: Ling
from the database group and Sandro from the DIES group. Although they
already had lots of work to do for themselves, they accepted me as their PhD
student. They just worked a bit harder to teach me how to do research. After
a while Jeroen took over the hard job of taming me. And I have to say, he has
been quite successful. We have had plenty of fruitful brainstorm sessions. We
spoke at the same frequency, understanding each others scribbles on the white
board. This does not mean we did not have different opinions, but with good
scientific reasoning we always agreed in the end.

I also would like to thank my two promotors: Pieter and Wim. Pieter
was able to let me look at my research challenges from a completely different
angle than I was looking before, rescuing me from the tunnel vision those PhD
students in ivory towers suffer from. Wim has amazed me for his efficiency. He
is capable of reading my papers within a minute and have very good comments
on them afterwards. Also when I explained things to him that took me weeks
to understand, he immediately grasped the point. Although his agenda was
always overbooked he always found time to have regular meetings with me.
With respect to this, I would like to thank his secretaries Suse, Sandra, Ida and
Anne for making those appointments.

Our group secretaries, Marlous, Nicole and Thelma were always happy to
help me with my financial businesses and booking conference trips. I really
appreciated their help.

xi

xii ACKNOWLEDGEMENTS

I would also like to thank my parents and my brother for their support in
me. My father helped to correct the English of my thesis, although he did not
understand most of the technical parts. Even my cat Jikke contributed to my
thesis, by walking over my keyboard from time to time.

Staying focused for 4 years was not possible without the necessary relaxation.
The Twentse Studenten Alpen Club (TSAC) has been quite capable of filling
my spare time. I enjoyed the many weekends and vacations I spend with my
fellow climbers. I especially would like to thank Martin and Timo who accepted
the offer to be my paranimphs.

Contents

Abstract v

Samenvatting vii

Acknowledgements xi

1 Introduction 1
1.1 Problem statement . 2
1.2 Literature overview . 3

1.2.1 Using indices . 4
1.2.2 Using trapdoor encryption 8
1.2.3 Using secret sharing . 8
1.2.4 Using homomorphic encryption 9

1.3 Contributions . 10

2 Linear versus tree search 13
2.1 Introduction . 14
2.2 Linear search strategy . 14

2.2.1 Implementation . 17
2.2.2 Experimental data . 18
2.2.3 Results . 19

2.3 Tree search strategy for XML documents 24
2.3.1 Implementation . 28
2.3.2 Experimental data . 29
2.3.3 Results . 29

2.4 Benefits of using tree structure 31
2.5 Conclusions . 32

xiii

xiv CONTENTS

2.6 Future work . 33

3 Using secret sharing to search in encrypted data 35
3.1 Introduction . 36
3.2 Secure multi-party computation 36
3.3 Searching in encrypted data . 37

3.3.1 Data representation . 37
3.3.2 Retrieval . 41
3.3.3 Trie enhancement . 48

3.4 Implementation . 50
3.4.1 MySQLEncode . 51
3.4.2 The filter implementation 51
3.4.3 Query engines . 52

3.5 Experiments . 54
3.5.1 Encoding . 55
3.5.2 Query Engines . 56
3.5.3 Strictness . 58

3.6 Conclusions and future work . 59
3.7 Appendix: XMark’s auction DTD 61

4 Exploring cryptographic extensions to PIR 65
4.1 Introduction . 66
4.2 Homomorphic encryption . 66

4.2.1 RSA . 67
4.2.2 ElGamal . 67
4.2.3 Goldwasser-Micali . 68
4.2.4 Paillier . 69
4.2.5 Boneh-Goh-Nissim . 70
4.2.6 Domingo-Ferrer . 71

4.3 Private information retrieval . 72
4.4 Cryptographic extensions to PIR 74

4.4.1 Bit map . 75
4.4.2 Range queries . 77
4.4.3 Stored query vectors . 77
4.4.4 Stored query templates 79
4.4.5 Replacement . 81
4.4.6 Shift . 81
4.4.7 Addition . 82
4.4.8 Dual homomorphic encryption 83

CONTENTS xv

4.4.9 Polynomial extension . 84
4.5 Conclusion and future work . 86

5 A lucky dip as a secure data store 89
5.1 Introduction . 90
5.2 A lucky dip . 91

5.2.1 Data storage . 91
5.2.2 Private information retrieval in our setting 92
5.2.3 Reusing shares . 92
5.2.4 Threat model . 93
5.2.5 Database operations . 94

5.3 Security aspects . 96
5.3.1 Entropy . 97
5.3.2 Difficulty of finding a message by an attacker 97
5.3.3 Using compression . 98
5.3.4 Trade-off between security and efficiency 99

5.4 Conclusion and future work . 100

6 Conclusions and future work 103
6.1 Introduction . 104
6.2 Search techniques . 104

6.2.1 Hacıgümüş et al. 104
6.2.2 SWP . 105
6.2.3 Tree based extension of SWP 106
6.2.4 Secret sharing technique 107
6.2.5 Homomorphic encryption techniques 107
6.2.6 Search solutions compared 108

6.3 Long term storage . 111
6.4 Conclusion and future work . 111

Bibliography 113

Chapter 1

Introduction

When private information is stored in databases that are under the
control of others, a typical way to protect the data, is to encrypt
the data before storing it. To retrieve the data efficiently, a search
mechanism is needed that still works over the encrypted data. This
chapter gives a brief overview of several search strategies that exist
in the literature and introduces our own techniques which will be
further investigated in subsequent chapters. Some techniques add
meta-data to the database and do the searching only in the meta-
data, while others search in the data itself, use secret sharing or
homomorphic encryption methods to solve the problem. Each strat-
egy has specific advantages and disadvantages.

1

2 1. INTRODUCTION

1.1 Problem statement

In a thesis about searching in encrypted data we should first ask ourselves the
questions:

• Why should we want to protect our data using encryption?

• Why not use access control?

• Why should we want to search in encrypted data?

• Why not decrypt the data first and then search in it?

Access control is a perfect way to protect your data as long as you trust the
access control enforcement. And exactly that condition often makes access
control simply impossible.

Consider a database on your friend’s computer. You store your data on
his computer because he has bought a brand new large capacity hard drive.
Furthermore, he leaves his computer always on, so that you can access your
data from everywhere with an Internet connection. You trust your friend to
store your data and to make daily backups. However, your data may contain
some information you do not want your friend to read (for instance, letters to
your girlfriend). In this particular setting you cannot rely on the access control
of your friend’s database, because your friend has administrator privileges. He
can always circumvent the access control or simply turn it off.

Fortunately, there is an alternative. You can encrypt all your sensitive in-
formation before storing it in the database. Now you can use your friend’s
bandwidth and storage space without fearing that he is reading your private
data.

A problem arises when more and more information is being stored. Although
storing it is not problematic, retrieval is. In the situation before you encrypted
your data you were able to send a precise query to the server and to retrieve
only the information you needed. But in the situation where all the information
is stored in encrypted form you cannot make the selection on the server any
more. So, for each query you have to download the whole database and do the
decryption and querying on your own computer. Since you may have a slow
Internet connection, you get tired of waiting for the download to finish. Of
course, you can send your encryption key to your friend’s database and ask it to
do the decryption for you, but then you end up in almost the same situation as
you started with. If the database can decrypt your data, your friend can read
it.

1.2. LITERATURE OVERVIEW 3

We see a similar trend to outsource data in the hosting of Internet websites.
Often special centres are being used that are administered by external system
administrators. These system administrators have full access rights to all of the
data, which is not a problem when dealing with publicly accessible websites.
However, this changes drastically when it comes to sensitive information.

Not only companies outsource their data, also consumers do it. People used
to store their e-mails and photos on their own computers. Nowadays, people use
more and more web-based solutions to store their e-mails (hotmail, gmail, imap),
photos and even home-made movies (youtube). All this outsourced private
content should be made searchable.

From these examples we can distill the following research question:

“Can we store private data securely on a database server, when we
cannot rely on its access control mechanism, in such a way that it is
possible to search the data efficiently?”

After having found a method to securely outsource the data, we would like
the data to stay secure in the future. Our second research question, therefore,
is:

“Can data be stored in such a way that it stays secure forever without
relying on computational assumptions?”

1.2 Literature overview

Traditionally, databases are protected by means of some kind of access con-
trol mechanism. Those mechanisms work fine under the assumption that the
database runs on a trusted server. In this thesis we will weaken this assumption.
To keep the data hidden from the prying eyes of non-authorised users, many of
the publicly available database systems offer the opportunity to encrypt records.
However, none of those systems provide a way to efficiently query the encrypted
records.

In the literature some solutions to our research question have been proposed.
We can categorise them in four classes:

Using indices Instead of searching in the encrypted data itself, the actual
search is performed in an added index. The index contains for example the
hashes of the encrypted records [30–33].

4 1. INTRODUCTION

Using trapdoor encryption Trapdoor encryption makes it possible to give
a user a way to perform some operation on the encrypted data without the
need to give him the encryption key. A possible goal of trapdoor encryption
is to allow a user to search for a particular keyword, without giving him the
opportunity to find any other keyword [9, 10,25,46,50].

Using secret sharing Data can be stored securely by distributing it over
several servers. If the servers do not collude, the data will be secured forever.
The data is queried by using a secure protocol between the client and the servers
[13,14,35,36].

Using homomorphic encryption Some encryption functions give the abil-
ity to perform some simple operations directly on the encrypted data without
the need to decrypt the data first. This property can be used also to search in
the encrypted data [13,14,18].

The rest of this section will categorise the existing solutions into one of these
categories. For each category the most cited solution will be explained in more
detail.

1.2.1 Using indices

Relational databases use tables to store the information. Rows of the table cor-
respond to records and columns to fields. Often hidden fields or even complete
tables are added which act as an index. This index does not add information;
it is only used to speed up the search process. Hacıgümüş et al. [30–32] use the
index idea to solve the problem of searching in encrypted data. To illustrate
their approach we will use the example of table 1.1, which is stored on the server
as shown in table 1.2.

id name salary
23 Tom 70000
860 Mary 60000
320 Tony 50000
875 Jerry 5600

Table 1.1: Plain text salary ta-
ble.

etuple idS nameS salaryS

010101011 . . . 4 28 10
000101101 . . . 2 5 10
010111010 . . . 8 28 2
110111101 . . . 2 7 1

Table 1.2: Encrypted salary table.

1.2. LITERATURE OVERVIEW 5

id
0 200 400 600 800 1600

4 8 9 3 2

name
A F K P U Z

6 7 5 28 11

salary
0 20k 40k 60k 80k 100k

1 6 2 10 3

street
A F K P U Z

8 3 2 9 1

Figure 1.1: Partitioning of the id, name, salary and street fields.

The first column of the encrypted table contains the encryptions of whole
records. Thus etuple = Ek(id, name, salary), where Ek(·) is the encryption
function with key k. The extra columns are used as an index, enabling the
server to prefilter records. The fields are named the same as the plaintext labels,
but are annotated with the superscript S which stands for ‘server’ or ‘secure’.
The values for these fields are calculated by using partitioning functions drawn
as intervals in figure 1.1. The labels of the intervals are chosen randomly. For
example, consider Tony’s salary. It lies in the interval [40k, 60k〉. This interval
is mapped to the value 2 which is stored as the salaryS field of Tony’s record.
It is the client’s responsibility to keep these partitioning functions secret.

Querying the data is performed in two steps. Firstly, the server tries to give
an answer as accurately as it can. Secondly, the client decrypts this answer
and post-processes it. For this two-stage-approach it is essential that the client
splits a query Q into a server part QS (working on the index only) and a client
part QC (which post-processes the answer retrieved from the server). Several
methods of splitting are possible. The goal is to reduce the workload of the
client and the network traffic. To have a realistic query example, let us first add
a second table containing addresses to the database. The plain address table is
shown in table 1.3. It is stored encrypted on the server as shown in table 1.4.

id street
23 Avenue 4
860 Owl street 4
320 Downing street 10
875 Longstreet 100

Table 1.3: Plain text address table.

etuple idS streetS

110111100 . . . 4 8
110111110 . . . 2 2
000111010 . . . 8 8
001110110 . . . 2 2

Table 1.4: Encrypted address table.

6 1. INTRODUCTION

address

salary

σsalary<55000

⋊⋉

address.id = salary.id

πstreet

Figure 1.2: Optimal query evaluation
on unencrypted data.

addressS

D

salaryS

D

σsalary<55000

⋊⋉

address.id = salary.id

πstreet

Figure 1.3: Inefficient evaluation on
encrypted data.

As an example query we choose the following SQL query:

SELECT street

FROM address, salary

WHERE address.id=salary.id AND salary<55000

SQL is a declarative query language. It does not dictate the database how
the result should be calculated only what the result should be. The database
has freedom in the sequence of operations (selection (σ), projection (π), join
(⋊⋉), etc.). In this case the optimal evaluation is the one drawn in figure 1.2.

The direct translation of the query tree to the encrypted domain is drawn
in figure 1.3. The tables are decrypted before the normal query evaluation is
performed. It clearly calculates the correct result but misses our goal of reducing
network bandwidth and client computation. Because the decryption can only be
done at the client the encrypted tables have to be transmitted over the network
and decrypted on the client. Therefore the operators should be pushed below
the decryption operator D as much as possible, doing the majority of the work
at the server side. To prove the correctness of those transformations Hacıgümüş
et al. [30–32] have designed a theoretic algebra similar to the relational algebra.

In figure 1.4 the selection on the salary is pushed below the decryption.
Notice that the selection σS

salaryS∈{1,6,2} returns also salaries between 55000

and 60000, so the client side selection σsalary<55000 cannot be left out. After
the client selection is pulled above the join (not shown), the join can be pushed

1.2. LITERATURE OVERVIEW 7

addressS

D

salaryS

σS
salaryS∈{1,6,2}

D

σsalary<55000

⋊⋉

address.id = salary.id

πstreet

Figure 1.4: Selection pushed down.

addressS

salaryS

σS
salaryS∈{1,6,2}

⋊⋉
S

addressS .idS = salaryS .idS

D

σsalary<55000 ∧ address.id=salary.id

πstreet

Figure 1.5: Efficient evaluation on en-
crypted data.

below the decryption as shown in figure 1.5.

The original strategy as described in [31] has two drawbacks: it cannot
handle aggregate functions like SUM, COUNT, AVG, MIN and MAX very well
and frequency analysis attacks are possible.

In a follow up paper [33] Hacıgümüş et al. extend the method described in
this section with privacy homomorphisms [18], allowing operations like addition
and multiplication to work on encrypted data directly, without the need to
decrypt first.

The second drawback of the original method is dealt with by Damiani et
al. [16]. Instead of using an encrypted invertible index, they use a hash function
that is designed to have collisions. This way, an attacker has no certainty that
two records are equal when they have the same index. The proposed indexing
mechanism, which is based on the B+ tree indexing method, can balance the
trade-off between efficiency and security. This solution however, still suffers from
linkability. Two different hashes means that the corresponding plaintexts are
different too. And although the same hashes do not guarantee equal plaintexts,
it is still a strong indication that they are equal. Our solutions in chapters 3
and 4 do not suffer from this linkability.

8 1. INTRODUCTION

1.2.2 Using trapdoor encryption

In contrast to the approach of Hacıgümüş et al., Song, Wagner and Perrig [46] do
not need extra meta-data. In their approach the search is done in the encrypted
data itself. They use a protocol that uses several encryption steps which will be
explained in section 2.2.

The protocol has two drawbacks:

• The plaintext is split into fixed sized words which is not natural, especially
not for natural languages.

• The search time complexity is linear in the length of the whole database.
It does not scale up to large databases.

We solve both drawbacks in section 2.3. There we use XML as a data format
and exploit its tree structure to get a logarithmic search complexity instead of
a linear complexity.

Both Boneh et al. [10] and Goh [25] combine the index based approach with
the trapdoor encryption method. They encrypt a message sent by Alice to Bob
with the public key of Bob. In order for intermediate nodes, like the mail server,
to find particular keywords, Alice may append a Public Key Encryption with
Keyword Search (PEKS) entry for each keyword. When Alice sends a message
M with keywords W1, . . . ,Wm, she transmits 〈EBpub

(M)||PEKS(W1)||
· · · ||PEKS(Wm)〉. Bob may want his mail server to filter his mails according to
some keywords. Bob can give his mail server the ability to find a predefined set
of keywords by giving it a trapdoor for each keyword W . With such a trapdoor
and a PEKS, the server can test whether the PEKS matches the trapdoor. The
approaches of Boneh et al. and Goh only differ in the implementation.

All these keyword based search techniques can only be used to find exact
matches. Agrawal et al. [9] provide an order-preserving scheme for numeric data
that allows any comparison operation directly applied on the encrypted data.

Waters et al. [50] use a similar technique which is based on the work of
Song et al. [46], to secure audit logs. Audit logs contain detailed and probably
sensitive information about past execution. It should therefore be encrypted.
Only when there is a need to find something in the encrypted audit log, a trusted
party can generate a trapdoor for a specific keyword.

1.2.3 Using secret sharing

A third solution to our problem uses secret sharing [2, 7]. In this context,
sharing a secret does not mean that several parties know the same secret. In

1.2. LITERATURE OVERVIEW 9

cryptography secret sharing means that a secret is split over several parties in
such a way that no single party can retrieve the secret. The parties have to
collaborate in order to retrieve the secret.

Secret sharing can be very simple. To share, for instance, the secret value 5
over 3 parties a possible split can be 12, 4 and 26. To find the value back all the
3 parties should collaborate and sum their values modulo 37 (5 ≡ 12 + 4 + 26
(mod 37)).

A typical usage of secret sharing is Private Information Retrieval (PIR) [14].
PIR aims at letting a user query the database without leaking to the database
which data was queried. The idea behind PIR is to replicate the data among sev-
eral non-communicating servers. A client can hide his query by asking all servers
for a part of the data in such a way that no server will learn the whole query
by itself. Chor et al. [14] prove that PIR with a single server can only be done
by sending all data to the client for each query. Computational PIR [13,14,35]
uses cryptographic techniques to achieve a similar goal as information theoretic
PIR. Lin and Candan [36] use a single server scheme which is a compromise
between total privacy and efficiency. A query is hidden by asking for more data
than required. The server cannot tell which data is really needed and which
data is just added garbage. To avoid replay attacks and server learning, all data
elements in the retrieved set are shuffled and stored at different locations after
each query.

The database scheme that is described in chapter 3, uses the idea of secret
sharing to accomplish the task of storing data such that you need both the server
and the client to collaborate in order to retrieve the data. Further requirements
are:

• The server should not benefit from the collaboration. Its knowledge about
the data should not increase (much) during the collaboration.

• The data split should be unbalanced, meaning that the server share is
heavier (in terms of storage space) than the client share.

In chapter 3 the encoding of the data is described in full detail, including a
protocol to search the data efficiently.

1.2.4 Using homomorphic encryption

Homomorphic encryption is a type of encryption with a special property. This
property makes it possible to calculate with encrypted values. Using the Paillier

10 1. INTRODUCTION

encryption function [40], for example, it is possible to calculate the sum of two
encrypted values by multiplying the two encryptions. Thus,

E(x) · E(y) = E(x + y). (1.1)

While it is possible to argue that this property weakens the security of the
encryption, it certainly has its purpose. It is often used for secure electronic
voting or for private information retrieval (PIR) [13,14]. The latter aims at hid-
ing the query from the database server. The server stores the data in plaintext,
but does not know what data is being asked for.

Homomorphic encryption has not been used to search in encrypted data,
yet. In chapter 4 an investigation is made whether it is possible to store the
data in encrypted form (by using homomorphic encryption), while still being
able to use the PIR techniques to hide the query.

1.3 Contributions

Chapters 2-4 give new or improved solutions for our first research question while
chapter 5 addresses the second research question.

We summarise the contributions of this thesis here.

Classification of the field of searching in encrypted data We have made
a classification of the techniques that can be used to search in encrypted data.
This resulted in a book chapter [1]. Parts of it are being reused in this thesis
(especially in this introductory chapter).

Tree extension to the Song et al. scheme Chapter 2 improves the tech-
nique that was introduced by Song et al. [46]. The original scheme of Song et al.
has a linear time complexity for searching unstructured text. We have extended
their scheme to make it more suitable for tree structured data. The efficiency is
improved from linear to logarithmic complexity. The research has been carried
out in close collaboration with Jeroen Doumen, Willem Jonker, Ling Feng and
Pieter Hartel and has resulted in a journal paper [4].

Secure multi party search protocol based on secret sharing Chapter 3
builds on the idea of secret sharing to make an interactive protocol between a
client and a server system. The protocol ensures the secrecy of the query while
an encoding based on polynomials, ensures the secrecy of the stored data. The

1.3. CONTRIBUTIONS 11

research has been carried out together with Jeroen Doumen, Willem Jonker,
Berry Schoenmakers and Pieter Hartel and has resulted in two papers and a
patent application [3]. The first paper [2] gives the fundamental theoretical
basis, while the second paper [7] presents experimental data from tests we carried
out with our developed prototype.

Exploration of the use of homomorphic encryption in the domain of
searching in encrypted data Chapter 4 explores ways to use homomorphic
encryption functions to solve the research challenge addressed in this thesis.
Together with Jeroen Doumen, Willem Jonker and Pieter Hartel we investigated
means to extend Private Information Retrieval (PIR). PIR is a way to hide a
query to the database system while keeping the stored data in the clear. Our
extensions aim at encrypting the stored data too.

Secure long term storage Chapter 5 gives a solution for our second re-
search question. The research has been carried with Willem Jonker and Stefan
Maubach and has resulted in a patent application [6].

The three solutions of chapters 2, 3 and 4 answer our first research question
with a ‘yes’, whereas chapter 5 answers our second research question with a ‘yes’.
Although both research questions are answered affirmatively, not all solutions
are equally efficient. In the concluding chapter the different solutions are com-
pared to each other with respect to efficiency, security and practicality. Which
solution is best depends on the system architecture, the structure of the data,
the query complexity and the preferred balance between security and efficiency.

Chapter 2

Linear versus tree search

Song, Wagner and Perrig (SWP) have published a theoretical paper
about keyword search in encrypted textual data. We describe a
prototype implementing their theory. Tests are carried out with this
prototype to analyse efficiency. As expected encryption and search
times are linear in the size of the database. More interestingly they
also depend on the block sizes used in the protocol.

Since the search speed is linear in the size of the document, SWP
does not scale well to a large database. We have developed a tree
search algorithm based on the linear search algorithm that is suit-
able for XML databases. Our schema is more efficient than SWP
since it exploits the tree structure of an XML document. We have
built a similar prototype implementation for the tree search case.
Experiments show a reduction in search time from linear to loga-
rithmic in the size of the database.

13

14 2. LINEAR VERSUS TREE SEARCH

2.1 Introduction

Song, Wagner and Perrig (SWP) [46] describe a protocol to store sensitive data
on an untrusted server. A client (Alice) can store data on the untrusted server
(Bob) and search in it, without revealing the plain text of either the stored data
or the query. Only the query result is known to both Alice and Bob when the
protocol finishes.

The data that is being searched is unstructured text. The search process
is therefore a linear process. To investigate the scalability, we have made a
prototype (section 2.2.1) implementing the original scheme. Our test results
(section 2.2.2) show, as expected, a linear connection between the size of the
database and the search time.

In section 2.3 we introduce an extension to the original scheme. Our ex-
tension uses structured XML documents instead of unstructured text. The tree
structure of an XML document is exploited to improve the search speed from lin-
ear to logarithmic in the size of the database. This comes at the price of handing
the server the tree structure. Another prototype (section 2.3.1) demonstrates
the scalability of our tree extension (section 2.3.2).

In section 2.4 we compare the test results of both prototypes.

2.2 Linear search strategy

The original SWP protocol of Song et al. [46] consists of three parts: storage,
search and retrieval. After summarising the protocol we will discuss our imple-
mentation and test results showing the influence of various parameters on the
encryption and search times.

Storage
Before Alice can store information on Bob she has to do some calculations.
First of all she has to fragment the whole plaintext W into several fixed
sized words Wi. Each Wi has length n. She also generates encryption keys
k′ and k′′ (which are used for every word) and a sequence of reproducible
random numbers Si using a pseudo-random bit generator. Then she has
or calculates the following for each block Wi:

2.2. LINEAR SEARCH STRATEGY 15

Wi plaintext block
k′′ encryption key
Xi = Ek′′(Wi) = 〈Li, Ri〉 encrypted text block
k′ key for f (see below)
ki = fk′(Li) key for F (see below)
Si random number i
Ti = 〈Si, Fki

(Si)〉 tuple used by search
Ci = Xi ⊕ Ti value to be stored

(2.1)

Here E is a standard symmetric block cipher and f and F are pseudo-
random functions:

E : key64 × intn → intn
f : key64 × intn−m → key64

F : key64 × intn−m → intm

(2.2)

The encrypted word Xi has the same block length as Wi (i.e. n). Li has
length n−m and Ri has length m (see Figure 2.1). The parameters n and
m may be chosen freely. Section 2.2.3 gives guidelines for efficient values
for n and m. The value Ci can be sent to Bob and stored there. Alice
may now forget the values Wi, Xi, Li, Ri, ki, Ti and Ci, but she should
remember k′, k′′ and Si.

Search
After the encrypted data is stored on Bob in the previous phase Alice
can ask Bob queries. Alice can provide Bob with an encrypted version of
the plaintext word W and ask him if and where W occurs in the original
document. If W has been found at location j (i.e. W = Wj) then 〈j, Cj〉
is returned. Alice has or calculates:

k′′ encryption key
k′ key for f
W plaintext block to look for
X = Ek′′(W) = 〈L,R〉 encrypted block
k = fk′(L) key for F

(2.3)

Then Alice sends the value of X and k to Bob. Having X and k Bob is
able to compute for each ciphertext block in the database (Cp):

Tp = Cp ⊕ X = 〈Sp, S
′
p〉 =

{

〈Sp, Fk(Sp)〉 if Wp = Wj

garbage otherwise
IF S′

p = Fk(Sp) THEN RETURN 〈p,Cp〉
(2.4)

16 2. LINEAR VERSUS TREE SEARCH

f

Xi

n

Ci

n

F

n

Xi

n

Ek′′

Li Ri

mn − m64 bits

k′

64 bits

ki

Wi

n − m

Si

m

Fki
(Si)

Figure 2.1: Encryption schema.

2.2. LINEAR SEARCH STRATEGY 17

Note that all locations with a correct Tp value are returned. However
there is a small probability that T satisfies T = 〈Sq, Fk(Sq)〉 but Sq 6= Sp.
Therefore Alice should check each answer if the correct random value is
used.

Retrieval
Alice can also ask Bob for the ciphertext at any position p. Alice, knowing
k′, k′′ and the seed for S, can recalculate Wp by

k′ key for f
k′′ encryption key
p desired location
Cp = 〈Cp,l, Cp,r〉 stored block
Sp random value used for block p
Xp,l = Cp,l ⊕ Sp left part of encrypted block
kp = fk′(Xp,l) key for F
Tp = 〈Sp, Fkp

(Sp)〉 check tuple
Xp = Cp ⊕ Tp encrypted block
Wp = Dk′′(Xp) plaintext block

(2.5)

Here D is the decryption function D : key64 × intn → intn such that
Dk′′(Ek′′(Wi)) = Wi.

This is all Alice needs. She can store, find and read the text while Bob
cannot read anything of the plaintext. The only information Bob gets from
Alice is C in the storage phase and X and k in the search phase. Since C and
X are both encrypted with a key only known to Alice and k is only used to hash
one particular random value, Bob does not learn anything of the plaintext.

The only information Bob learns from a search query is the location where
an encrypted word is stored and the number of occurences.

2.2.1 Implementation

Section 2.2 introduces three functions: E, f and F . Figure 2.1 shows how they
are connected to each other. E could be a block cipher in ECB mode and f and
F pseudo-random functions. For our prototype we chose DES for all three of
them, but any other symmetric block cipher could have been used instead. E
is exactly DES in ECB mode. Since DES works on blocks of 64 bits n should
be a multiple of 64 bits.

18 2. LINEAR VERSUS TREE SEARCH

f and F are pseudo-random functions with variable sized output values.
The output values are used as kind of hash values. Standard hash functions like
SHA-1 have a fixed sized hash value. The last (or the first) m bits of the hash
value could be used, but then m should be less than the size of the hash value
(160 bits for SHA-1). To allow a larger value for m our prototype uses DES in
CBC mode. To hash a data block of length n − m to a hash value of length m
the block is encrypted with the specified key (64 bits DES key) but only the last
m bits are used as hash value. The only restriction for m is that n − m ≥ m
and thus n ≥ 2m. See Menezes et al. [37] for a more detailed description of the
used hash algorithm.

The prototype implementation is split into two programs, one for the en-
cryption and one for the search. Both programs share the same parameters
(n,m, S, k′, k′′). The search program uses the output of the encryption program
(i.e. the encrypted XML document) and the search word W to produce a list
of locations where the word occurs.

2.2.2 Experimental data

The Encrypt and Search tools give us the opportunity to experiment with the
parameters used in the protocol. We are especially interested in the influence
the parameters n and m have on the encryption and search speed. We use
the XML benchmark1 to generate three sample files of sizes 1 MB, 10 MB and
100 MB. Although these files are XML files the tree structure is not used in the
protocol. The tools just consider them as large text files. The benchmark is only
used to compare the results with previous and with future experiments where
we intend to exploit the tree structure for more efficient queries on encrypted
data.

Changing the parameters n and m also influences the correctness of the
result. Therefore, also the number of collisions has been measured (see fig-
ure 2.3(a)). Collisions are the false hits that occur because of the collisions in
the hash function F . F hashes the random value Si of size n − m to a hash
value of length m, where n−m ≥ m. For n−m > m collisions are unavoidable.

Tests are carried out ∀n ∈ {8, 16, 24, 32, 40, 48, 56, 64} where these values
are the number of bytes and not bits. Because we use DES in ECB mode for
the encryption function E we only use multiples of 8 bytes. m should be less
than or equal to n

2 so m ∈ {1, 2, . . . , n
2 }. Measurement results are plotted in

figures 2.4-2.6. The absolute values are not interesting because they depend on

1http://www.xml-benchmark.org

http://www.xml-benchmark.org

2.2. LINEAR SEARCH STRATEGY 19

0

20

40

60

80

100

120

0 10 20 30 40 50 60 70 80 90 100

t(
s)

database size (MB)

encryption
search

Figure 2.2: Encryption and search times with different database sizes for n = 64
and m = 32.

the physical hardware. However, differences between the various configurations
are interesting. All tests were carried out on a Pentium IV 2.4 MHz with 512
MB memory.

2.2.3 Results

From the experiments we conclude that:

• The larger the dataset the larger the encryption and search times. As
expected from the SWP theory the encryption and search time grow linear
in the size of the dataset. Therefore the protocol does not scale well and
can only be used for reasonable small databases (see figure 2.2).

• The larger n the shorter the encryption and search times (figures 2.4-2.6).
This can be explained by looking at the number of blocks. The larger n
the fewer blocks there are. For each block a fixed number of steps are
taken. Most of these steps do not depend on the length of the blocks.
Therefore less time is needed for the whole database.

20 2. LINEAR VERSUS TREE SEARCH

1

10

100

1000

10000

100000

8 16 24 32 40 48 56 64

co
ll
is

io
n
s+

1

n

m = 1
m = 2
m = 3

(a) Number of Measured Collisions

0

100

200

300

400

500

600

8 16 24 32 40 48 56 64

t(
s)

n

encryption
search

(b) Encryption and Search Times (m = n

2
)

Figure 2.3: Measurement Results of Linear Search Prototype for the 100 MB
Case.

2.2. LINEAR SEARCH STRATEGY 21

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

t(
s)

m

n = 8
n = 16
n = 24
n = 32
n = 40
n = 48
n = 56
n = 64

(a) Encryption speed

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25 30

t(
s)

m

n = 8
n = 16
n = 24
n = 32
n = 40
n = 48
n = 56
n = 64

(b) Search speed

Figure 2.4: Measurement results for small dataset (1 MB).

22 2. LINEAR VERSUS TREE SEARCH

0

10

20

30

40

50

60

0 5 10 15 20 25 30

t(
s)

m

n = 8
n = 16
n = 24
n = 32
n = 40
n = 48
n = 56
n = 64

(a) Encryption speed

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30

t(
s)

m

n = 8
n = 16
n = 24
n = 32
n = 40
n = 48
n = 56
n = 64

(b) Search speed

Figure 2.5: Measurement results for medium sized dataset (10 MB).

2.2. LINEAR SEARCH STRATEGY 23

0

100

200

300

400

500

600

0 5 10 15 20 25 30

t(
s)

m

n = 8
n = 16
n = 24
n = 32
n = 40
n = 48
n = 56
n = 64

(a) Encryption speed

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30

t(
s)

m

n = 8
n = 16
n = 24
n = 32
n = 40
n = 48
n = 56
n = 64

(b) Search speed

Figure 2.6: Measurement results for large dataset (100 MB).

24 2. LINEAR VERSUS TREE SEARCH

• The larger n the fewer collisions occur (figure 2.3(a)). This can be ex-
plained by the smaller number of blocks too.

• For a fixed value of n the encryption and search times hardly depend on
the value of m (horizontal lines in figures 2.4-2.6). Higher values for m are
slightly better. Since the number of collisions is lower for higher values of
m it is best to choose m maximally high (that is, m = n

2). This is also
the reason why figure 2.2 and 2.3 are drawn at an m value that is half the
size of n.

• Searching is faster than encryption, because fewer operations have to be
calculated for each block (see figure 2.2 and 2.3).

• Collisions can be avoided by choosing a sufficiently large value of m. The
largest value for m is n

2 which is also the most optimal one. But also
for smaller values of m the number of collisions is negligible. Only for m
values equal to 1 or 2 bytes, there are many collisions.

That the encryption and search times are linear in the size of the text, does
not come as a surprise, since it can be predicted from the theory. The influence
of the chosen bit lengths n and m on the encryption and search times, however,
could not have been predicted from the theory alone.

2.3 Tree search strategy for XML documents

So far, we considered only text files. Using structured XML data can improve
the efficiency.

Grust [28, 29] introduces a way to store XML data in a relational database
such that search queries can be handled efficiently. An XML document is trans-
lated into a relational table with a predefined structure. Each record consists of
the name of the tag or attribute and its corresponding value. The information
about the tree structure of the original XML document is captured in the pre,
post and parent fields. All fields can be computed in a single pass over the XML
document. The pre and post fields are sequence numbers that count the open
tags respectively the close tags. The parent value is the pre value of the parent
element (see figure 2.7(a)).

It is common to use XPath [47] to localise elements within XML documents.
Although the syntax of XPath is similar to the syntax used for directory names
or for the addresses of a web page, an XPath expression is more than just a
name. XPath is often used in conjunction with XQuery [48]. XQuery is a query

2.3. TREE SEARCH STRATEGY FOR XML DOCUMENTS 25

language for XML documents. XQuery has more control over the output of
a query than XPath. XQuery uses XPath to localise the XML elements and
builds new XML documents from these elements. In this thesis we focus only
on the search part. Therefore we will use XPath to express our search queries.

The XPath axes like descendant, ascendant, child, etc. can be expressed as
simple expressions over the pre, post and parent fields. For instance:

• v is a child of v′ ⇐⇒ v.parent = v′.pre

• v is a descendant of v′ ⇐⇒ v′.pre < v.pre ∧ v′.post > v.post

• v is following v′ ⇐⇒ v′.pre < v.pre ∧ v′.post < v.post

Some XPath axes can be drawn in a pre/post plane. Each XML element has
a pre and a post value, which can be plotted in a 2-D drawing as in figure 2.7(b).
The solid circle indicates a single element (E), which is taken as the starting
point. Horizontal and vertical axes can be drawn through this point (the dashed
lines), creating four quadrants. For instance, the upper left quadrant contains
all the elements with smaller pre but larger post values than the chosen starting
point E. This means that all these elements have an open tag that lies before
the open tag of E and have a close tag after the close tag of E. In other words,
they enclose E and are therefore the ascendants of E. The other three quadrants
form the XPath axes: descendants, previous siblings and following siblings.

Not all updates are efficient. Modification and deletion are no problem, but
element insertion causes the need to recalculate the pre, post and parent values
for all following elements. The number of recalculations can be reduced by
leaving gaps in the numbering. Thus, instead of numbering the pre and post
values like 1, 2, 3, . . ., number them like 100, 200, 300,

Grust aims at storing XML data in the clear. To protect the data crypto-
graphically we combine his strategy with the linear search approach of Song,
Wagner and Perrig (SWP) [46]. Only some slight modifications to the SWP
approach are necessary:

1. The input file is not an unstructured text file but a tree structured XML
document. The division of the data into fixed sized blocks does not seem
natural. Therefore, we use variable block lengths that depend on the
lengths of the tag names, attribute names, attribute values and the text
between tags.

2. The sequence number of a block is no longer appropriate to define the
location within a document. We use the pre value instead.

26 2. LINEAR VERSUS TREE SEARCH

pre post parent
<a> 1 0

 2 1
 1
<c 3 1

d=”. . . ”> 4 2 3
<e/> 5 3 3

</c> 4
 5

(a) Pre/Post/Parent calculation

descendants

siblings
following

ascendants

post

previous
siblings

pre

(b) Visualisation of XPath Axes in a
Pre/Post Plane

Figure 2.7: Calculation and Usage of Pre, Post and Parent fields.

The equations of section 2.2 can be rewritten to the equations below. Note
that all subscripts have changed. For simplicity we only describe the encryption
of tag names. Exactly the same scheme is used for attribute names (prefixed
with a @ sign) or the data itself by simply substituting value for tag.

Storage
Storage is analogous to the original SWP scheme. Only the subscripts
have been changed.

Wtag plaintext block
k′′ encryption key
Xtag = Ek′′(Wtag) = 〈Ltag, Rtag〉 encrypted text block
k′ key for f
ktag = fk′(Ltag) key for F
Spre pseudo-random number pre
Tpre,tag = 〈Spre, Fktag

(Spre)〉 tuple used by search
Cpre,tag = Xtag ⊕ Tpre,tag value to be stored

(2.6)

Note that the random value Spre does not depend on the tag name but
on the location (expressed in the pre field) because all elements with the
same tag name should be encrypted to different values when stored.

2.3. TREE SEARCH STRATEGY FOR XML DOCUMENTS 27

Search
An XPath query like /tag1//tag2[tag3 = ”value”] is encrypted to
/〈Xtag1

, ktag1
〉//〈Xtag2

, ktag2
〉[〈Xtag3

, ktag3
〉 = ”〈Xvalue, kvalue〉”] before

sending it to the server. The server calculates the result traversing the
XPath query from left to right. Each step consists of two or three sub
steps:

• Evaluating the XPath axis /, //, [and] using the pre, post and
parent fields. It is possible to find all children (/) or all descendants
(//) of elements found in a previous step by just using the pre, post
and parent field. See section 2.3.1 for an example.

• Filtering out the records that do not satisfy S′
p = Fktag

(Sp) in Tp,tag =
Cp,tag ⊕ Xtag = 〈Sp, S

′
p〉.

• Eventually filtering out the records with an incorrect value field.

Retrieval
Also the retrieval is analogous to the original scheme. Also here, only the
subscripts have been changed.

k′ key for f
k′′ encryption key
pre desired location
Cpre,tag = 〈Cpre,tag,l, Cpre,tag,r〉 stored block
Spre random value
Xtag,l = Cpre,tag,l ⊕ Spre left part of encrypted block
ktag = fk′(Xtag,l) key for F
Ttag = 〈Spre, Fktag

(Spre)〉 check tuple
Xtag = Cpre,tag ⊕ Ttag encrypted block
Wtag = Dk′′(Xtag) plaintext block

(2.7)

Example 2.3.1 Figure 2.8 shows an XML tree. Like the server that stores the
tree, we do not see any node names. The colouring of the nodes is the result of an
XPath evaluation. In this example we use the XPath expression /a/*/b//c/d.
White nodes do not have to be checked. The black node is the end result. Grey
nodes indicate whether the check using 〈X, k〉 resulted in a match (dark grey) or
a miss (light grey). As we can see, it is sufficient to check only a few nodes.

28 2. LINEAR VERSUS TREE SEARCH

Figure 2.8: XPath evaluation of the query /a/*/b//c/d. Dark grey nodes
indicate a match with a part of the query and light grey nodes a miss. The end
result is coloured black and the nodes that have not been touched are white.

2.3.1 Implementation

Like the linear prototype the tree search prototype is split into two parts: one
for encryption and one for searching.

The Encrypt tool uses a SAX parser to read the input XML document. In
one pass over the input, the pre, post and parent values can be calculated.
When an end tag is encountered all the information to encrypt the element is
available. Attributes are handled as tags with a leading @ sign. A new record
〈pre, post, parent, Cpre,tag, Cpre,value〉 is inserted into the relational database,
where Cpre,tag and Cpre,value are calculated as in section 2.3. In our prototype
we use a MySQL database to store the encrypted document.

In contrast with the linear prototype there are no predefined block sizes n
and m. Instead of using a fixed sized block, n is simply set to the length of the
tag name. m is a predefined fraction of n (for example 0.5).

To speed up the search process, indices are added to the MySQL table for
the pre, post and parent fields.

The search tool evaluates the XPath expression step by step. Preliminary
results are stored in a result table. Each step consists of two or three sub steps:

1. Evaluate the path delimiter (/, //, [or]). For this step only the pre, post
and parent fields are needed. For example // (descendants) is translated
into the SQL query:

CREATE TABLE new_result

2.3. TREE SEARCH STRATEGY FOR XML DOCUMENTS 29

SELECT data.*

FROM data, previous_result

WHERE data.pre > previous_result.pre AND

data.post < previous_result.post

2. Filter out the records in the preliminary result with the wrong tag/attribute
names by applying the steps of the original linear search method.

3. When the step consists of an equation expression the previous step is
repeated but now for the value instead of the name.

2.3.2 Experimental data

For the search query a word guaranteed to be in at least one location was
chosen. The search engine does not stop when one occurrence is found; the
whole document is scanned for each query, giving a complete answer to the
query.

For the tree search prototype the only configurable parameters are m and the
data size. The block length n depends on the tag names and values. Encryption
tests are carried out on the same XML documents as in the linear prototype.
In this case m is relative to n; m ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. The encryption times
for the 1 MB, 10 MB and the 100 MB files are 21.5, 188 and 1195 s and do not
depend on m.

Search tests with different values for m show that m does not influence
the search speed. The results shown in this section are carried out with a
fixed m = 0.5. Some queries are shown in table 2.1. Also the number of
elements in the result is shown for each query (table 2.2). All three files have
approximately the same tree depth but have different branch factors (average
number of children per element).

2.3.3 Results

From the tree search prototype we can conclude that:

• The encryption time is linear in the size of the input.

• The encryption time and the search time hardly depend on the chosen
value for m.

• The search time depends both on the structure of the XML document and
the search query. The search time is of order O(p) where p is the number

30 2. LINEAR VERSUS TREE SEARCH

Table 2.1: Search times calculated for search queries with different depth and
branch factor.

t(ms) t(ms) t(ms)
query 1 MB 10 MB 100 MB
/site 1281 1506 1285
/site/regions 1266 1380 1321
/site/regions/asia 1358 1435 1342
/site/regions/asia/item 1409 1687 2464
/site/regions/asia/item/description 1518 2030 4135
/site/regions/africa/item/description 1376 1591 2442
/site/regions/europe/item/description 1448 2777 9059
/site/regions/australia/item/description 1455 2098 4577
/site/regions/namerica/item/description 1654 3226 13672
/site/regions/samerica/item/description 1336 1817 3028
//* 1398 2382 18530
//item 3639 21775 191899

Table 2.2: Result sizes calculated for search queries with different depth and
branch factor.

count count count
query 1 MB 10 MB 100 MB
/site 1 1 1
/site/regions 1 1 1
/site/regions/asia 1 1 1
/site/regions/asia/item 20 200 2000
/site/regions/asia/item/description 20 200 2000
/site/regions/africa/item/description 5 55 550
/site/regions/europe/item/description 60 600 6000
/site/regions/australia/item/description 22 220 2200
/site/regions/namerica/item/description 100 1000 10000
/site/regions/samerica/item/description 10 100 1000
//* 21048 206130 2048180
//item 217 2175 21750

2.4. BENEFITS OF USING TREE STRUCTURE 31

Table 2.3: Block Sizes (in bytes).

data avg tag standard avg text standard avg all standard
size length deviation size deviation blocks deviation

1 MB 9.8 3.4 28 70 18 48
10 MB 9.8 3.4 29 70 18 48

100 MB 9.8 3.4 29 70 19 49

of elements to be read. For queries without // the search time is O(bd)
where b is the branch factor (the average number of subelements) and d
is the depth in the tree where the answer is found. Figure 2.8 visualizes
this. All the nodes on the path from the root to the requested node have
to be examined. All siblings of those nodes have to be examined too.

• The wildcard operator (*), indicating any tag name, is very efficient. This
can be explained by the fact that no cryptographic steps are involved. The
search engine only uses the pre, post and parent values.

2.4 Benefits of using tree structure

From the experiments with the linear search method we know that the encryp-
tion time depends on the block size. Therefore, to make a fair comparison
between the linear text encryption and the tree encryption, we have to take into
account the block size of the tree search method. In our tree based extension,
a block is formed by either a tag/attribute name or the textual information
between the open and close tag. The properties of our sample document are
shown in table 2.3.

As we can see from the table, the average block size of our sample XML
document lies around 18 bytes. To make a fair comparison between the linear
and the tree based scheme, we choose n to be equal to 18. From the linear
scheme (figure 2.3) we expect an encryption time of around 275 s to encrypt a
100 MB database. In reality, however, the encryption takes 1195 s. The reason
why the tree based protocol is so much slower than the linear protocol is the
added complexity of the program. Whereas in the linear case the data is just
unstructured data, in the tree case the data is parsed, an index is added and
translated into SQL queries to fill a database. Thus much more work is done.

32 2. LINEAR VERSUS TREE SEARCH

The major benefit of using a tree structure is the increase in search speed.
Only a small part of the whole tree has to be searched. Because the search
time totally depends on the data and the query, a straight comparison between
the linear and the tree case is impossible. However, when we take n to be
equal to 18 again, it takes the linear prototype approximately 75 s to search a
100 MB database. If we look at the last column of table 2.1 we see times are
much smaller. Only the worst case query //item is slower. Again, this can be
explained by the greater complexity of the tree implementation.

Theoretically, the linear search complexity is linear in the number of nodes
that have to be examined. For an average query, only the nodes on the path
from the root node to the answer and all their siblings have to be examined.
With a path length of d and an (average) branch factor of b, the normal tree
search complexity is O(bd). Only in the worst case (with queries like //item)
the whole tree has to examined. In that case the search complexity is O(bd)
which is similar to the linear search approach.

2.5 Conclusions

We have implemented a prototype for the theory described by Song et al. [46].
We show that the search complexity is linear in the size of the text. We also
have defined a new protocol for semi-structured XML data that exploits the tree
structure. Experiments with the implementations of both protocols show that
the encryption speed remains linear in the size of the input, but that a major
improvement in the search speed can be achieved. Our contributions are:

Faster search strategies
The tree structure of the XML data can be exploited to increase efficiency.
Whereas linear search is necessary in order to search for a word in an
unstructured text, faster search strategies are possible when looking for a
specific path in structured XML data. Tree search search decreases search
time dramatically.

Variable block size
The original protocol works with a fixed block size. Words in a natural
language like English have variable lengths. Therefore the English words
should be padded or split which make it more difficult to search for it.
Our new tree based scheme does not use fixed size blocks any more.

2.6. FUTURE WORK 33

2.6 Future work

Currently our prototype treats the text within the XML tags as single blocks. In
fact, it does not distinguish between tags/attributes and the unstructured text.
A future implementation should be hybrid. The part of the query dealing with
tag names and attribute names should use our tree based extension, whereas
the part that deals with the unstructured text should use the original SWP
scheme [46]. Our current prototype does not accept all the functions that can be
used in XPath. All functions that ‘calculate’ over the textual information (like
contains, substring, starts-with, string-length, concat, not, sum, floor, ceiling
and round) are not supported. The hybrid scheme will be able to handle more
of these functions, although maybe not to their full extent. For example, in the
hybrid scheme the contains function can only be used to check whether a text
contains a word or a sequence of consecutive words. It cannot be used to check
whether a part of a word can be found in the text. The same holds for the
functions substring and starts-with. Functions like sum, floor, ceiling and round
interpret the data as numbers, which is something the SWP scheme does not
support. Therefore, it is not likely that the hybrid scheme will support all the
XPath functions.

Another deficiency of the current scheme is the lack of relational, additive
and multiplicative expressions. Currently, only the equality operator ‘=’, the
inequality operator ‘!=’ and the logical operators ‘and’ and ‘or’ can be used to
form an expression. Further research is needed to support the full expressiveness
of XPath.

As XPath is a part of XQuery, our tree extension to SWP can also be used for
XQuery. Whereas XPath can only point to a location within an XML document,
XQuery can build another XML document as the answer to a query. A follow-up
project will investigate the possibility to make this answer searchable as well.

Chapter 3

Using secret sharing to

search in encrypted data

In this chapter we present a method, inspired by secure multi-party
computation, to search efficiently in encrypted data. We will encrypt
an XML documents by encoding a tree of XML elements as a tree
of polynomials. Each polynomial is split into two parts: a random
polynomial for the client and the difference between the original
polynomial and the client polynomial for the server. Since the client
polynomials are generated by a random sequence generator, only the
seed has to be stored on the client. In a combined effort of both the
server and the client a query can be evaluated without traversing
the whole tree and without the server learning anything about the
data or the query.

35

36 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

3.1 Introduction

We propose a method that looks like secure multi-party computation where two
parties, a client and the database server, together evaluate a query on an XML
document. Before we will present our solution (section 3.3) we will say a few
things about secure multi-party computation in general (section 3.2).

3.2 Secure multi-party computation

We speak of secure multi-party computation when several parties calculate a
function result without giving the other parties access to their input. More pre-
cisely, the parties want to evaluate the function result (y1, . . . , yn) = f(x1, . . . , xn)
where each parameter xi is the private input of party Pi and yi its private out-
put. It is also possible that all y’s are equal. In that case it is written as
y = f(x1, . . . , xn). In principle there exist schemes that can evaluate any func-
tion securely using secure multi-party computation [26]. However, no efficient
general schemes are known to us at the moment of writing.

For example, let f be an anonymous voting function. Each voter Pi can
vote for a decision (xi = 1) or against it (xi = 0). The function f can be
defined as the function f(x1, . . . , xn) =

∑n

i=1 xi (in case of a majority vote) or
as f(x1, . . . , xn) =

∏n

i=1 xi (in case of a veto system).

One characteristic of secure multi-party computation is the lack of a trusted
third party. In our example there is no need for a trusted party to count the
votes.

Many secure multi-party computation protocols are based on Shamir’s secret
sharing scheme [44]. These protocols have at least two phases. In the first phase
each party Pi splits up its input xi in such a way that at least t ≤ n shares
are needed to reconstruct xi. In the second phase each party Pi calculates its
share of the function result given only his own input and the shares of the other
parties. Now, the complete function result is shared over all parties.

We will now give the implementation of one specific secure multi-party com-
putation protocol. In this protocol Pi shares its input variable xi by choosing a
random polynomial gi of degree t such that gi(0) = xi. Pi sends to each other
party Pj the value of gi(j). When t parties collaborate they can reconstruct
the original polynomial gi by interpolating the t points (j, gi(j)). With the
polynomial it is easy to recalculate xi = gi(0).

The second phase consists of the local computations with the distributed
shares gi(j) and depends on the function f . For simplicity reasons we consider

3.3. SEARCHING IN ENCRYPTED DATA 37

only our voting case where f(x1, . . . , xn) =
∑n

i=1 xi. Each party Pj locally
calculates the sum h(j) =

∑n

i=1 gi(j). Having at least t collaborating parties
and thus t points 〈j, h(j)〉 it is possible to construct the polynomial h =

∑n

i=1 gi

and also f(x1, . . . , xn) = h(0).

3.3 Searching in encrypted data

The solution presented in this chapter has been inspired by secure multi-party
computation. One way to look at the problem of searching in encrypted data
[4,21] is to consider the search algorithm as a search function that is to be eval-
uated in the sense of secure multi-party computation. The search(data, query)
function takes two arguments, data and query, as input. Unlike secure multi-
party computation both inputs originate from the same party (the client), al-
though the data part is stored on the server. Our solution use the same building
blocks secure multi-party computation is based on (secret sharing and a secure
distributed protocol), but cannot be considered as a secure multi-party protocol.

We use a very simple form of secret sharing: addition. The original XML
document is transformed to a tree of polynomials (section 3.3.1). Each poly-
nomial is split into a random part and a server part such that the sum equals
the original polynomial. We will generate the client polynomials by using a
pseudo-random bit generator. Since we can rerun the generator with the same
seed, all the client polynomials can be regenerated. Therefore, there is no need
to store them at all. Section 3.3.2 proposes a distributed protocol to search in
the data.

Damiani et al. [15] use a similar strategy in the relational setting.

3.3.1 Data representation

Secure multi-party computation works best with simple algebraic expressions
like polynomials. It is possible to map the tree of elements from an XML file to
a tree of polynomials. We will demonstrate this mapping by way of the example
shown in figure 3.1.

A plaintext XML document is being transformed into an encrypted database
by following the steps below.

1. First we introduce a function map : node → Fp, which maps the tag names
of the nodes to values of the finite field Fp, where p is a prime that is larger
than the total number of different tag names. The mapping function may

38 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

c

b

a b

c

a

(a) XML
Example

name value
a 2
b 1
c 3

(b) Mapping Func-
tion x − 3

(x − 1)(x − 3)

x − 2 x − 1

(x − 3)(x − 2)(x − 1)

(x − 1)2(x − 2)2(x − 3)2

(c) Unshared, unreduced Encoding

f3(x) = x + 2

f2(x) = x2 + x + 3

f5(x) = x + 3 f6(x) = x + 4

f4(x) = x3 + 4x2 + x + 4

f1(x) = 2x3 + 3x2 + 2x + 3

(d) Unshared, reduced Encoding

=

c3(x) = 3x2 + 2x + 1

c2(x) = x3 + 2x2 + 2

c5(x) = 3x3 + 2x2 + x c6(x) = 2x3 + x2 + 3x + 1

c4(x) = 2x3 + x + 2

c1(x) = 2x3 + x2 + 1

(e) Client Encoding

+

s3(x) = 2x2 + 4x + 1

s2(x) = 4x3 + 4x2 + x + 1

s5(x) = 2x3 + 3x2 + 3 s6(x) = 3x3 + 4x2 + 3x + 3

s4(x) = 4x3 + 4x2 + 2

s1(x) = 2x2 + 2x + 2

(f) Server Encoding

Figure 3.1: The mapping function (3.1(b)) maps each name of an input doc-
ument (3.1(a)) to an integer. The XML document is first encoded to a tree of
polynomials (3.1(c)) before it is reduced to the finite field F5[x]/(x4−1) (3.1(d))
and split into a client (3.1(e)) and a server (3.1(f)) part.

3.3. SEARCHING IN ENCRYPTED DATA 39

be chosen arbitrarily. For our example we choose the mapping function
displayed in figure 3.1(b). The mapping function should be private to
avoid the server to see the query (see section 3.3.2).

2. The tree of XML elements (figure 3.1(a)) is represented as a tree of poly-
nomials (figure 3.1(c)). The tree is built from the leaves up to the root
node. A leaf node X is translated to the monomial x − map(X). Every
non-leaf node is calculated as the product of the polynomials of all its
children times its own monomial.

The following function maps every XML tag to a polynomial:

f(node) =

{

x − map(node) if node is a leaf node
(x − map(node))

∏

d∈child(node) f(d) otherwise

(3.1)
The polynomials are stored in a tree (figure 3.1(c)) which has the same
structure as the XML tree (figure 3.1(a))

3. To avoid large degree polynomials we will work in the finite ring Fq[x]/(xq−1−
1), where q is a prime power q = pe. For the reader’s convenience, all
proofs will be given for q prime. The coefficients of the polynomials are
reduced modulo q. If p is prime then ∀a ∈ F

∗
p : ap−1 ≡ 1 (mod p). Since

these polynomials will only be used for evaluation in points of Fp[x], it
makes sense to store the polynomials modulo xp−1 − 1. In effect, this
means we are working in Fp[x]/(xp−1 − 1). In order to avoid zero divi-
sors, we will avoid mapping a tagname to p − 1. Thus we reduce every
polynomial to a polynomial of degree less than p − 1 with coefficients in
Fp.

Although we calculate in a finite ring, no information about the original
tag names is lost. We will prove this in theorem 3.3.4.

Figure 3.1(d) shows the reduction to the finite ring Fp[x]/(xp−1 − 1) with
p = 5.

4. This step will introduce the actual security. Uptil now all the steps were
merely transformation from one encoding to another. In this step the tree
from the previous step is split into a client (figure 3.1(e)) and a server tree
(figure 3.1(f)). Both trees have the same structure as the original one.
The polynomials of the client tree are generated by a pseudo-random bit
generator. The polynomials of the server tree are chosen such that the
sum of a client node and the corresponding server node equals the original

40 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

polynomial. Look for example to the top nodes of figure 3.1(e) and 3.1(f).
The sum (2x3+x2+1)+(2x2+2x+2) equals the root node of figure 3.1(d)
(2x3 + 3x2 + 2x + 3).

Note that this is a direct application of a basic secret sharing scheme
(as is often used in secure multi-party computations). This can easily be
extended to a model with multiple servers, in which the client together
with n servers can reconstruct the shared secret polynomial.

5. Since the client tree is generated by a pseudo-random bit generator it suf-
fices to store the seed on the client. The client tree can be discarded. When
necessary, it can be regenerated using the pseudo-random bit generator
and the seed value.

Before we can prove theorem 3.3.4 we need some lemmas.

Lemma 3.3.1 If p is prime then
∏p−1

i=1 (x − i) ≡ xp−1 − 1 (mod p).

Proof Let f(x) =
∏p−1

i=1 (x − i) and g(x) = xp−1 − 1. Two polynomials are
the same if they have exactly the same roots with the same multiplicity. All
elements of F

∗
p = {1, . . . , p − 1} are roots of f(x). By Fermat’s little theorem,

for p prime all these p − 1 roots of f(x) are also roots for g(x). Thus the two
polynomials are equal. �

Lemma 3.3.2 Let p be prime and f(x) ∈ Fp[x]. If f(x) is non-zero mod x −
(p − 1) then f(x) is also non-zero modulo xp−1 − 1.

Proof From f(x) ≡ 0 (mod xp−1 − 1) ⇐⇒ (xp−1 − 1)|f(x) and from lemma
3.3.1 it follows that x − (p − 1)|xp−1 − 1 in Fp[x]. From that we can conclude
that x − (p − 1)|f(x) and thus also that f(x) ≡ 0 (mod x − (p − 1)). This
proves that f(x) ≡ 0 (mod xp−1 − 1) =⇒ f(x) ≡ 0 (mod x− (p− 1)), which
is equivalent to the statement of the lemma. �

Lemma 3.3.3 Let p be prime, and let f(x) ∈ Fp[x] be defined as f(x) =
∏p−2

i=1 (x − i)ei , where ei ∈ N. Then f(x) 6≡ 0 (mod xp−1 − 1).

3.3. SEARCHING IN ENCRYPTED DATA 41

Proof Consider the evaluation of f(x) at p − 1:

f(p − 1) =

p−2
∏

i=1

((p − 1) − i)ei

Because ∀i ∈ {1, . . . , p − 2} : i 6= p−1, f(p−1) 6= 0. Thus x− (p−1) cannot be
a factor of f(x), and we have that f(x) 6≡ 0 (mod x−(p−1)). By lemma 3.3.2
this implies that f(x) 6≡ 0 (mod xp−1 − 1). �

Now we are ready to prove that the mapped values can be retrieved uniquely:

Theorem 3.3.4 Given a polynomial f(x) in Fp[x]/(xp−1 − 1) (p prime) of an
element node and all polynomials (q1, . . . , qn) of its children, the mapped value
map(node) can be retrieved uniquely.

Proof Because of the way the polynomial f(x) of the element node was con-
structed, we know at least one solution exists for the equation

f(x) ≡ q1(x) · · · qn(x)(x − t),

where t is the mapped value to be retrieved. To prove that the solution is
unique, suppose there are two solutions t1 and t2 to this equation: f(x) ≡
q1(x) · · · qn(x)(x−t1) and f(x) ≡ q1(x) · · · qn(x)(x−t2). Then q1(x) · · · qn(x)(x−
t1) ≡ q1(x) · · · qn(x)(x − t2). This can be rewritten to

q1(x) · · · qn(x)(t1 − t2) ≡ 0 (mod p).

Thus either q1(x) · · · qn(x) ≡ 0 (mod p) or (t1 − t2) ≡ 0 (mod p). Since we
know that q1(x) · · · qn(x) 6≡ 0 (mod p) by lemma 3.3.3 (the qi’s match the re-
quired form by construction), we can conclude that t1 ≡ t2 (mod p). �

Note that the actual solution for t can easily be found by solving t in the
equation f(x) ≡ q1(x) · · · qn(x)(x − t).

3.3.2 Retrieval

Now that the data has been shared on both the client and the server, we will
describe how to query the data. First we will discuss simple element lookups:
find an element given its tag name. In the second half of this section we will
look at more difficult XPath queries.

42 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

Element lookup

We assume that the document of figure 3.1(a) has been shared as described in
section 3.3.1. Let’s further assume that we would like to evaluate the query
//c. This XPath expression means that we want to find node elements tagged
c somewhere in the tree. Normally (even in the non-encrypted case) this boils
down to traversing the whole tree and comparing the tag names with the name
c. We will do it smarter than that.

First we use the mapping function to translate the tag name c to x = 3 (see
figure 3.1(b)). The client sends this value of x to the server. If we want to keep
the query secret for the server the mapping function should be private to the
client.

The server evaluates the polynomials in the given point (x = 3). Each time
a polynomial has been evaluated the calculated value is sent back to the client
(see figure 3.2).

The client does the same thing on its own side. Furthermore it calculates
the sum of the client element and the server element. If this sum equals zero
then the element contains a factor (x− 3), meaning either that the element has
tag name c or that it contains a descendant named c. A sum different from
zero means that the branch is dead. If this is the case the client informs the
server so that the server can stop evaluating polynomials for elements in the
tree starting with that branch.

Each zero element in the sum tree that does not have a zero subelement
represents an answer to the query. All other zero’s in the sum tree may or may
not represent correct answers. To find out whether the element itself or one of
its descendants is named c, the non-shared polynomials of both the element and
all its direct children have to be reconstructed.

To reconstruct the element value, let f be the sum of the polynomials on
the server and the client of an element and q1, . . . , qn the combined polynomials
of all its direct children.

By construction we know that f can be written as

f(x) = (x − t)

n
∏

i=1

qi(x) (mod p) (3.2)

To check the correctness of an answer we have to solve t in f(x) = 0. In our
example t should be 3.

Theorem 3.3.4 proves that there is just a single solution for t. It is solved
by:

3.3. SEARCHING IN ENCRYPTED DATA 43

c3(3) = 4

c2(3) = 2

c5(3) = 2 c6(3) = 3

c4(3) = 4

c1(3) = 4

(a) Client part

+

s3(3) = 1

s2(3) = 3

s5(3) = 4 s6(3) = 4

s4(3) = 1

s1(3) = 1

(b) Server part

=

f3(3) = 0

f2(3) = 0

f5(3) = 1 f6(3) = 2

f4(3) = 0

f1(3) = 0

(c) Sum

Figure 3.2: Query result for the query ‘x = 3’. Both the server and the client
evaluate the polynomials for the given value of x in the finite ring Fp[x]/(xp−1−
1). The server sends its values to the client which adds it to its own calculated
value. A branch is a dead end if the sum is not 0.

44 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

Figure 3.3: Execution path for a simple element lookup. The black node is
the requested node. The grey nodes have been evaluated. The dark grey nodes
resulted in a zero and the light grey nodes in a non-zero value. All the white
nodes have been left untouched.

f(x) = 0 ⇐⇒
(x − t)(q1(x) · · · qn(x)) = 0 ⇐⇒

ap−1x
p−1 + ap−2x

p−2 + · · · + a1x + a0 = 0
(3.3)

Where each ai is a linear function in t.

Equation (3.3) can be rewritten as







ap−1(t) = 0
. . .
a0(t) = 0

. (3.4)

A single (non-trivial) equation in (3.4) is enough to solve t. The other
equations may be used to verify the result. Remember that we did not trust
the server. We now have at least a way to check the answer. If, however, we
trust the server to give correct answers, only the last equation is enough. In
that case only the constant factor (without x) of each polynomial stored on the
server has to be transmitted. This reduces bandwidth and increases efficiency
but decreases security.

Figure 3.3 shows a typical evaluation path for a simple element lookup. The
tree shows which nodes should be evaluated. All the white nodes does not have
to be touched.

3.3. SEARCHING IN ENCRYPTED DATA 45

Advanced querying

So far we evaluated only queries like //tagname. But also more elaborate XPath
queries can be performed. It is of course possible to evaluate a query like
//a/b//c/d/e from left to right. That is, search the tree for occurrences of ‘a’,
then search within the found branches for ‘b’, etc. But it is more efficient to
evaluate the whole query at once. Since every polynomial in the tree consists of
the roots of all its descendants, a single query can find all elements that contain
the elements a, b, c, d and e (in any order). In this case a search consists of the
following steps:

1. from the root node find all ‘a’ elements that have b, c, d and e elements
somewhere deeper in the tree

2. from the found nodes find all direct children ‘b’ that have elements c, d
and e as descendants

3. etc.

Using this strategy elements are filtered out in a very early stage and there-
fore the efficiency is increased.

In a real query evaluation you start at the XML root node and walk down-
wards until you encounter a dead branch. Whether you choose to traverse the
tree depth- or breadth-first, the strategy remains the same: try to find dead
branches as early as you can. Fortunately, each node contains information
about all the subnodes. Therefore, it’s almost always the case that you find
dead branches (where the unshared evaluation returns a non-zero value) before
reaching the leaves.

To illustrate the search process we will follow the execution run with the
example query //c/a. This XPath query should be read as: start at the root
node, go 1 or more steps down to all c nodes that have an a node as child. The
roman numbers in figure 3.4 correspond to the following sequence of operations:

(i) We start the evaluation process at the root nodes of the server and the
client. In parallel, they can substitute the values in the root polynomials.
Both s1(map(c)) = s1(3) and s1(map(a)) = s1(2) should be evaluated,
but it does not matter in which order (analogously for c1(·)). To mislead
the server we choose to evaluate first the a nodes and then the c node,
although the query suggests otherwise.

46 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

-

(vi) f2(2) = 4

(xii) f5(2) = 0 (xiv) f6(2) = 1

(viii) f4(2) = 0
(x) f4(3) = 0

(ii) f1(2) = 0
(iv) f1(3) = 0

(a) Unshared Evaluation

=

-

(v) c2(2) = 3

(xi) c5(2) = 4 (xiii) c6(2) = 2

(vii) c4(2) = 0
(ix) c4(3) = 4

(i) c1(2) = 1
(iii) c1(3) = 4

(b) Client Evaluation

+

-

(v) s2(2) = 1

(xi) s5(2) = 1 (xiii) s6(2) = 4

(vii) s4(2) = 0
(ix) s4(3) = 1

(i) s1(2) = 4
(iii) s1(3) = 1

(c) Server Evaluation

Figure 3.4: Evaluation process of the query //c/a using the same mapping
function and data encoding as in figure 3.1. The Roman numbers indicate the
sequence of operations.

3.3. SEARCHING IN ENCRYPTED DATA 47

(ii) Each time the server has substituted a value for x in one of its polynomials,
it sends the result to the client, who can add the server result to its own.
In this example f1(2) = c1(2)+ s1(2) = 1+ 4 ≡ 0 (mod 5), which means
that either the original root node was a or the root node has a descendant
a.

(iii) Next thing to do is check that the root node is or contains c.

(iv) f1(3) = 0. Now we know that the root node contains both a and c, a
prerequisite of our query. Thus, we proceed one step down in the tree.

(v) The left child is checked for a.

(vi) This time f2(2) = 4 6= 0. Thus the left subtree does not contain an a

node. Apparently this is a dead branch. It is not even necessary to check
for a c node; the query //c/a can never hold in this branch. We can stop
evaluating it and backtrack to the right subtree.

(vii) In the right subtree we start checking for a c node.

(viii) Since f4(2) = 0, the right subtree seems promising.

(ix) Therefore we check also for an a node.

(x) The right tree still seems promising so we walk one level down.

(xi) Since the client knows the structure of the tree (if not, he can ask the
server for it), he knows that we have reached a leaf node. Therefore, it is
unnecessary to check for a c node.

(xii) Since this is a leaf node and f5(2) = 0 we now know for sure that node 5
is an a node.

(xiii) The rightmost leaf node is also checked for an a node.

(xiv) But it is not.

Up till now, we have two possible matches:

1. node 1 matches c and node 4 matches a

2. node 4 matches c and node 5 matches a

48 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

It is sufficient to check the exact value of node 4 only. If this node is a c node
then solution 1 holds, if this node is an a node solution 2 holds. If it is neither,
then there are no matches. The exact value of a node n can be found in two
different ways:

• Ask the server for the polynomial sn(x) and the polynomials of all its chil-

dren (let us name them s
(1)
n (x), . . . , s

(k)
n (x)). In the meantime calculate

cn(x) and its children c
(1)
n (x), . . . , c

(k)
n (x). The exact value can be calcu-

lated by dividing fn(x) by
∏k

i=1 f
(i)
n (x). The result will be a monomial

x − t where t is the node’s value.

• If fn(a) = 0 for some value a and for all children i of n, fi(a) 6= 0 then you
know that node n is a. Note that for recursive Document Type Definitions
(such as our example) there is no guarantee that this method works.

3.3.3 Trie enhancement

The approach sketched in section 3.3.1 is only efficient when pe is small. This
is no problem for tag names that are chosen from a fixed sized set (described in
a DTD), but cannot be used for the data because the number of different data
nodes is unbounded. And since each polynomial takes (pe − 1) log2 pe bits of
storage space, it is important to keep pe as small as possible.

In this chapter we propose a representation of XML documents allowing for
efficient searching in data nodes. Basically, all data nodes are transformed to
their trie representation [22].

A data string in the original XML document is translated to a path of nodes
where each node is chosen from a small set. Assume this set contains a, b, . . . , z.
With this set we can translate the tree shown in figure 3.5(a) to an equivalent
trie 3.5(b) or an uncompressed trie 3.5(c). An uncompressed trie stores exactly
the same information as the original data string, whereas the compressed trie
loses the order and cardinality of the words. If this is a problem an encryption
of the data string may be added to the node. In this example we first split a
string into words, represented by paths, and then each path is split into several
characters. Other ways of splitting the string into nodes are possible.

On average removing duplicate words from a text reduces the size by 50%.
Reducing a text into a compressed trie reduces the size by 75-80%. However each
node is converted into a polynomial of size (pe − 1) log2 pe bits. In case p = 29,
a polynomial costs 17 bytes. Due to the trie compression the ‘encryption’ of a
single letter will cost approximately 31

2 − 4 1
2 bytes.

3.3. SEARCHING IN ENCRYPTED DATA 49

”Joan Johnson”

name

(a) Original

⊥

n

a

⊥

n

o

s

n

h

o

J

name

(b) Trie

⊥

n

a

o

J

⊥

n

o

s

n

h

o

J

name

(c) Uncompressed trie

Figure 3.5: Transformation of an XML document tree into either a compressed
or an uncompressed trie.

Having translated the original XML tree into a (compressed) trie, the same
strategy as in section 3.3.1 can be used to encode the document. Like the
document, also the queries should be pre-tuned to the new scheme. A query
like

/name[contains(text(), "Joan")]

is first translated to

/name[//J/o/a/n]

before it is translated to

/map(name)[//map(J)/map(o)/map(a)/map(n)].

Simple regular expressions like . and .* can be mapped to their trie-
equivalents * and //.

50 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

map seed

MySQLEncode
doc

XML

SimpleQuery

AdvancedQuery

ClientFilter
RMI

ServerFilter

DB

serverclient

encoding

querying

Figure 3.6: Client/Server Architecture.

3.4 Implementation

In the previous sections we described our theory of searching in encrypted data
by using secret sharing and a special kind of encoding/encryption. To demon-
strate that searching in encrypted data is not only possible in theory, but also
in practice, we have built a prototype implementing the encoding and search
strategy described in section 3.3.

The implementation is written in Java and set up using a client/server model.
Figure 3.6 shows the architecture. We will elaborate on each component in the
following sections.

The server stores all the polynomials in a database. The database is not
protected and can be considered publicly readable. However, the client encodes
the original plaintext XML document into encoded polynomials by using the
MySQLEncode class. The encoder needs a private seed and a private map file
which will be re-used by the query engines. The map file is just a text file which
stores the mapping between tag names and corresponding values from Fpe .

The prototype consists of two different query engines: SimpleQuery and

3.4. IMPLEMENTATION 51

AdvancedQuery. Both engines share the same filtering technique. The filter
is distributed over the client and the server. The filter classes perform basic
operations like function evaluation and tree reconstruction.

3.4.1 MySQLEncode

Since the server should not learn the information it is storing, it is the client’s
responsibility to fill the database.

The MySQLEncode class acts on three files which are provided on the command-
line:

1. A map file

2. A seed file

3. The original XML document

The map file is a property file where each line is of the form name = value,
where name is one of the tag-names as specified by the DTD or XML schema
and value ∈ Fpe is the value it is mapped to.

The seed file acts as the encryption key and should therefore be kept secure.
Without the seed file it is impossible to regenerate the client tree, and without
the client tree the data on the server is meaningless.

The original XML document is parsed by a SAX parser1. This means that
there is no need for a big client machine with lots of memory. This fits nicely
into our philosophy of small clients (cell phones, for example) and big servers.
The parser linearly reads the document and constructs the tree on the fly. It
only needs memory proportional to the depth of the tree. The tree structure is
stored by adding pre, post and parent values to each polynomial. The pre and
post fields are sequence number that count the open tags respectively close tags.
The parent fields refers to the pre value of its parent. This is a common way
to store a tree structure into a flat relational table [2, 28]. In our prototype we
use MySQL2 as the database back-end. In order to speed up the search process
the pre, post and parent fields are indexed by a B-tree.

3.4.2 The filter implementation

Each different query engine (see section 3.4.3) will use the same set of basic
operations. These operations are offered by ServerFilter and ClientFilter.

1www.saxproject.org/
2www.mysql.com

www.saxproject.org/
www.mysql.com

52 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

Both classes implement a common interface Filter but are adapted to work
on the server site respectively the client site. The two objects communicate
with each other using Java’s Remote Method Invocation (RMI). The operations
consist of functions to query the tree structure as well as to evaluate the poly-
nomials. ServerFilter will evaluate the polynomials stored in the database
for the given values. ClientFilter first regenerates the client polynomial by
using the pseudo-random bit generator with the secret seed and the pre location
of the polynomial. After the evaluation of its generated polynomial it will add
the result to the retrieved value from the server. Only when the sum equals
zero, the location is returned to the invoking query engine, otherwise the next
candidate node is generated/retrieved, evaluated and added together.

With the evaluation method only the containment of a node in a subtree
is tested. To be sure that the node is equal to the root of the subtree there
is an option to check the first factor of a node. Let children(f) be a function
that retrieves the set of polynomials representing all the children of the node
represented as the polynomial f . To retrieve the factor (x − t) in f(x) =
(x − t)

∏

c∈children(f) c(x) it is necessary to reconstruct the node’s polynomial
and all its child polynomials. Because the equality test is expensive it should
only be invoked when absolutely necessary.

The operator nextNode() acts as a pipeline. The thin client only needs to
have one node in memory at a time. The big server will do the buffering of the
intermediate results.

3.4.3 Query engines

Since it was not a priori clear which search strategy is the best, we have decided
to implement two query engines, called SimpleQuery and AdvancedQuery, each
using a different search strategy, as explained below.

SimpleQuery

The most simple search strategy parses the XPath3 query into steps where each
step consists of a direction (child (/) or descendant (//)) and a tag name. Two
special tag names exist: .. matches the parent and * matches every child.

In this example we make use of the containment test only. In section 3.5
we will also use the equality test. There we will compare the two tests to see
whether one is preferable to the other. We will sketch the algorithm by using
an XML document generated by the XMark benchmark [43] and the example

3www.w3.org/TR/xpath

www.w3.org/TR/xpath

3.4. IMPLEMENTATION 53

query /site/*/person//city. See appendix 3.7 for the DTD. This query is
parsed into the following steps:

/site

The first slash instructs the search engine to locate the root node (i.e. the
only node without a parent (parent=0)). Since the parent field is indexed
this is done in constant time. After the root node has been located both
the stored polynomial on the server and the generated polynomial on the
client are being evaluated at map(site). Only when the sum equals zero
the next steps are carried out.

/* At this point the preliminary result set (implemented as a Queue on the
server) will consist of only a single element. This step will change the result
set into all children of the root node (i.e. regions, categories, catgraph,
people, open auctions and closed auctions). The * reduces the workload
because no additional filtering is needed.

/person

All children of the 6 nodes in the result set are being examined in this
step. Evaluation at map(person) is done for all the polynomials found.
Only those nodes for which the sum of the server and client evaluations
equals zero remain in the result set.

//city

This step is quite expensive in terms of execution time. The result of
the previous step is already quite large and this step even increases the
number of possible nodes that have to be checked. All the descendants
of the person-nodes (i.e. name, emailaddress, phone, address, homepage,
creditcard, profile, watches, street, city, country, province, zipcode, inter-
est, education, gender, business, age, watch, category, open auction and
description) have to be checked against map(city).

AdvancedQuery

The AdvancedQuery takes the tree as the starting point and parses it from root
to leaf nodes. In contrast to the SimpleQuery the whole remaining query is
taken into account at each step. We take advantage of the fact that nodes have
knowledge of all descendants. This way it is possible to identify dead branches
early in the search process at the cost of more evaluations for each node.

For easy comparison we use the same query and the same test (containment)
as before.

54 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

/site/*/person//city

The AdvancedQuery engine always starts at the root node. This node is
checked against map(site), map(person) and map(city). Only when all
three sums are zero the next steps are carried out. Note that we can only
check for the existence of a node. The structure of the query cannot be
taken into account since the nodes don’t store the structure of the subtree.

/*/person//city

The engine proceeds by consuming the /site part of the query and
traversing the tree one step down to find the root’s children. This unfil-
tered set of nodes are regions, categories, catgraph, people, open auctions
and closed auctions. After filtering only the people, open auctions and
closed auctions remain; all the other nodes do not contain person or city
nodes. Thus we may skip these branches.

/person//city

In this step the /* has been removed. This means we traversed the
tree one step downwards. The children of people, open auctions and
closed auctions are person, open auction and closed auction. Because
open auction and closed auction contain person and city nodes they re-
main in the result set even after filtering. The implementation does not
check if the node is a person but if it contains it. This is done because
we chose to use the containment test instead of the equality test. In sec-
tion 3.5 we investigate whether this was a good choice or not.

//city

From the person, open auction and closed auction nodes we interactively
walk downwards in the tree evaluating the polynomials at map(city) until
this results in a non-zero sum. The result set now contains all nodes having
a city inside. If we had chosen the equality test only the city nodes would
have been in the result set.

3.5 Experiments

The goal of the prototype is to perform experiments with it. With the exper-
iments described in this section we would like to find out what the practical
impact of our encrypted database scheme is. We investigated the storage space
overhead (section 3.5.1), the influence of the different search engine algorithms
(section 3.5.2) and the difference between the equality and containment tests

3.5. EXPERIMENTS 55

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

ti
m

e
(s

)

ou
tp

u
t

si
ze

(M
B

)

input size (MB)

output size index size time

Figure 3.7: Encoding.

(section 3.5.3). All experiments act on an auction database synthesized by the
XMark benchmark [43]. The DTD (see appendix 3.7) contains 77 elements. We
chose p = 83 and e = 1 throughout this section.

3.5.1 Encoding

Encoding an XML document as polynomials requires extra storage space. This
is due to the fact that each polynomial not only stores the information of its own
node but also of all its descendants. Figure 3.7 plots the encoded database size
against the input XML size. Approximately 17% of the output size is caused
by the pre, post and parent values (not plotted in the figure). The remainder
is thus approximately 1.5 times the size of the input. To speed up the search
process we added indices to the pre, post and parent fields using B-trees. The
size of these indices is added on top of the output size. As expected both the
storage space and the encoding time are strictly linear in the input size.

56 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

1. /site

2. /site/regions

3. /site/regions/europe

4. /site/regions/europe/item

5. /site/regions/europe/item/description

6. /site/regions/europe/item/description/parlist

7. /site/regions/europe/item/description/parlist/listitem

8. /site/regions/europe/item/description/parlist/listitem/text

9. /site/regions/europe/item/description/parlist/listitem/text/

keyword

Table 3.1: Queries with increasing length. The numbers correspond to fig-
ure 3.8.

3.5.2 Query Engines

One of the main reasons for building the prototype was that it was not a priori
clear what the most efficient query engine algorithm is. Is it best to evaluate
a polynomial at as many points as possible at each node to find an early dead
branch or should one evaluate at a single point at a time? To answer this ques-
tion we performed two tests: one with the simplest of all queries at increasing
length and one with more advanced queries containing // and *.

The first test is the worst case scenario for the advanced query engine. The
queries in table 3.1 are chosen in such a way that there is no gain for the
advanced algorithm. For instance it is a waste of effort to check whether a
europe node contains an item, description, parlist, listitem, text and keyword
node, because the DTD (see appendix 3.7) dictates it to be always the case.

As can be seen in figure 3.8, where the number of evaluations is plotted
against the queries of increasing length shown in table 3.1, the two search algo-
rithms are comparable. They differ by at most a constant factor.

The second test with queries containing // and * was performed in conjunc-
tion with the strictness test. The test results are given in the next section.

3.5. EXPERIMENTS 57

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9

query length

Varying the query length

output size
number of evaluations simple

number of evaluations advanced

Figure 3.8: Several queries with increasing query length. The query numbers
refer to the queries summed up in table 3.1.

58 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

1. /site//europe/item

2. /site//europe//item

3. /site/*/person//city

4. /*/*/open auction/bidder/date

5. //bidder/date

Table 3.2: Queries for the strictness checks. The numbers correspond to fig-
ure 3.9.

3.5.3 Strictness

Another aspect that is hard to predict is the difference between the equality
test and the containment test. On the one hand, it can be argued that, since
the reconstruction of the first factor of a polynomial is computationally more
expensive than a simple function evaluation, it is preferable to use the contain-
ment test. On the other hand, the reduced accuracy causes more nodes to be
examined. Therefore we used our prototype to compare the two tests using both
search algorithms.

For each query in table 3.2 four experiments were performed. Each algo-
rithm (simple and advanced) was run twice: once with the equality test (strict
checking) and once with the containment test (non-strict checking). The results
are plotted in figure 3.9. For all queries the advanced algorithm outperforms
the simple algorithm. Furthermore, it can be noticed that sometimes the strict
checking pays off and sometimes it does not. In general, the equality test may
cause a slight overhead or a major improvement.

Of course it is unfair to compare the equality test, which always gives the
exact answer, with the containment test without considering the accuracy. Fig-
ure 3.10 shows the accuracy of the containment test. It plots the percentage
of the nodes in the containment test’s result that also pass the equality test.
Notice that the accuracy drops for each // in the query. For absolute queries
which do not contain //, the accuracy of the containment test reaches 100%.

3.6. CONCLUSIONS AND FUTURE WORK 59

0

200

400

600

800

1000

1200

1400

1 2 3 4 5

ex
ec

u
ti

on
ti

m
e

(s
)

query

Strictness

non-strict/simple
strict/simple

non-strict/advanced
strict/advanced

Figure 3.9: Equality test versus containment test.

3.6 Conclusions and future work

We have developed a method to store a tree of XML elements as a tree of
polynomials, where the polynomials reside in the finite ring Fq[x]/(xq−1 − 1),
where q is a prime power (i.e. q = pe for some prime p and integer e). This tree
of polynomials is split in a server and a client part. Both parts are needed to
retrieve the original data. The created trees can be used to query the data in
a secure way. Our scheme has only a small penalty in storage space compared
to the unencrypted case. To store an XML tree with n elements and q different
tagnames in an unencrypted way we need a storage space in the order of n log q.
In the encrypted case the storage space is n(q − 1) log q.

The extra amount of storage space is used as a smart index which enables an
efficient search strategy. Each element has some knowledge of its descendants.
When searching the tree for an element, a branch can be marked as a dead-end
in a very early stage. Thus, only a small portion of the tree has to be examined.

Although more storage space is used than the information theoretic mini-
mum, the storage space is 50% less (measured with our prototype (using p = 83
and e = 1)) than the textual XML document. The mapping function acts as a

60 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

0

20

40

60

80

100

1 2 3 4 5

co
rr

ec
tn

es
s

(%
)

query

Accuracy

Figure 3.10: Accuracy of the containment test as defined by the quotient E
C

,
where E is the size of the result set using the equality test and C is the size of
the result set using the containment test.

3.7. APPENDIX: XMARK’S AUCTION DTD 61

compression function. Also, it is necessary to store both the start and the end
tag in our encoding. The encoding time is linear in the size of the input.

The prototype can choose between two different search algorithms. The
simple algorithm reads a query from left to right carrying out a single evaluation
at each node. The more advanced algorithm uses a look-ahead strategy where
the whole remaining query is taken into account. Experiments show that the
advanced algorithm outperforms the simple algorithm in the majority of cases.
Only for the most simple queries it is slightly slower.

The search algorithms can use two comparison tests: the equality test and
the containment test. The containment test is just a cheap evaluation whereas
the equality test is more expensive because a node’s own polynomial should be
divided by all its child polynomials. The cost of a single equality test depends
on the number of children, whereas the costs of a containment test is always
constant. All the child nodes should be retrieved from the server and added
to the pseudo-randomly generated client polynomials. The accuracy of the
containment test is reasonable but it does not result in a major improvement in
the running time. On the contrary, it is often better to use the equality test to
reduce the number of nodes to check, especially for the simple algorithm.

Using a trie to represent data content enables querying of the data inside the
XML tags. The trie-representation is not yet part of the current prototype but
we expect a major improvement especially in the advanced algorithm. Queries
over the data are more precise than those over the tag labels and thus the
number of nodes to be examined is being reduced. Since knowledge of the data
is present at high level nodes, the query engine can find the path to the answer
almost immediately.

3.7 Appendix: XMark’s auction DTD

<!ELEMENT site (regions, categories, catgraph, people,

open_auctions, closed_auctions)>

<!ELEMENT categories (category+)>

<!ELEMENT category (name, description)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT description (text | parlist)>

<!ELEMENT text (#PCDATA | bold | keyword | emph)*>

<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>

<!ELEMENT emph (#PCDATA | bold | keyword | emph)*>

62 3. USING SECRET SHARING TO SEARCH IN ENCRYPTED DATA

<!ELEMENT parlist (listitem)*>

<!ELEMENT listitem (text | parlist)*>

<!ELEMENT catgraph (edge*)>

<!ELEMENT edge EMPTY>

<!ELEMENT regions (africa, asia, australia, europe,

namerica, samerica)>

<!ELEMENT africa (item*)>

<!ELEMENT asia (item*)>

<!ELEMENT australia (item*)>

<!ELEMENT namerica (item*)>

<!ELEMENT samerica (item*)>

<!ELEMENT europe (item*)>

<!ELEMENT item (location, quantity, name, payment,

description, shipping, incategory+,

mailbox)>

<!ELEMENT location (#PCDATA)>

<!ELEMENT quantity (#PCDATA)>

<!ELEMENT payment (#PCDATA)>

<!ELEMENT shipping (#PCDATA)>

<!ELEMENT reserve (#PCDATA)>

<!ELEMENT incategory EMPTY>

<!ELEMENT mailbox (mail*)>

<!ELEMENT mail (from, to, date, text)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT date (#PCDATA)>

<!ELEMENT itemref EMPTY>

<!ELEMENT personref EMPTY>

<!ELEMENT people (person*)>

<!ELEMENT person (name, emailaddress, phone?, address?,

homepage?, creditcard?, profile?,

watches?)>

<!ELEMENT emailaddress (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT address (street, city, country, province?,

zipcode)>

<!ELEMENT street (#PCDATA)>

<!ELEMENT city (#PCDATA)>

<!ELEMENT province (#PCDATA)>

3.7. APPENDIX: XMARK’S AUCTION DTD 63

<!ELEMENT zipcode (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT homepage (#PCDATA)>

<!ELEMENT creditcard (#PCDATA)>

<!ELEMENT profile (interest*, education?, gender?,

business, age?)>

<!ELEMENT interest EMPTY>

<!ELEMENT education (#PCDATA)>

<!ELEMENT income (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

<!ELEMENT business (#PCDATA)>

<!ELEMENT age (#PCDATA)>

<!ELEMENT watches (watch*)>

<!ELEMENT watch EMPTY>

<!ELEMENT open_auctions (open_auction*)>

<!ELEMENT open_auction (initial, reserve?, bidder*, current,

privacy?, itemref, seller, annotation,

quantity, type, interval)>

<!ELEMENT privacy (#PCDATA)>

<!ELEMENT initial (#PCDATA)>

<!ELEMENT bidder (date, time, personref, increase)>

<!ELEMENT seller EMPTY>

<!ELEMENT current (#PCDATA)>

<!ELEMENT increase (#PCDATA)>

<!ELEMENT type (#PCDATA)>

<!ELEMENT interval (start, end)>

<!ELEMENT start (#PCDATA)>

<!ELEMENT end (#PCDATA)>

<!ELEMENT time (#PCDATA)>

<!ELEMENT status (#PCDATA)>

<!ELEMENT amount (#PCDATA)>

<!ELEMENT closed_auctions (closed_auction*)>

<!ELEMENT closed_auction (seller, buyer, itemref, price, date,

quantity, type, annotation?)>

<!ELEMENT buyer EMPTY>

<!ELEMENT price (#PCDATA)>

<!ELEMENT annotation (author, description?, happiness)>

<!ELEMENT author EMPTY>

<!ELEMENT happiness (#PCDATA)>

Chapter 4

Exploring cryptographic

extensions to PIR

Private Information Retrieval (PIR) aims at hiding a query to the
database system. Although the server can read and understand the
stored data, it cannot understand the query or the answer. In this
chapter we explore possibilities to go one step further by encrypting
the stored data too. The server should neither understand the stored
data, the query nor the answer. This chapter explores the use of
homomorphic encryption to accomplish this.

65

66 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

4.1 Introduction

Private Information Retrieval (PIR) deals with a similar problem as this thesis.
PIR hides the query and the answer to a database server but leaves the stored
data in the clear. In other words the server knows the data that it stores and
knows who is querying, but not what he asks for.

In some situations the protection of only the query is sufficient. A good
example of where PIR would be useful is to protect corporate research labora-
tories when connecting to a public patent database server. The patents should
be publicly available (by law). Corporate research laboratories tend to keep
their research activities secret for their competitors. A query for a specific
patent leaks the interest for a particular technology. Therefore, a competitor
should not be able to link a researcher to the patent he asks for. PIR solves
this.

In other situations, however, also the stored data should be protected. This
chapter investigates some possibilities to extend PIR with cryptographic tech-
niques in order to make not only the query and the answer invisible for an
attacker (including the server itself), but also the stored data. The data is
encrypted with a homomorphic encryption function. Section 4.2 will sum-
marise the most common homomorphic encryption functions. One of them,
the Goldwasser-Micali scheme (section 4.2.3), forms the basis for a PIR scheme
(section 4.3) which is used by most of our extensions.

In this chapter the database is simply a set of stored integer values. Using
standard PIR, it is possible to ask the database for the value that is stored on
a known location. The opposite query is not possible. If we know the value and
want to know whether and where it is stored, standard PIR techniques cannot
be used. Our extensions to PIR (section 4.4) aim at this second kind of queries.

4.2 Homomorphic encryption

Homomorphic encryption is a form of public key encryption with the property
that one can perform an operation on the plaintext by performing a (possibly
different) operation on the ciphertext, without using the decryption key. More
precisely, an encryption function E is called homomorphic if there exist two
(possibly the same) operations (⊕ and ⊗), such that

E(a ⊕ b) = E(a) ⊗ E(b). (4.1)

Several homomorphic encryption functions exist with different operators.

4.2. HOMOMORPHIC ENCRYPTION 67

The rest of this section summarises the most famous ones. Except for RSA
all the presented encryption methods are probabilistic, meaning that when two
identical messages are encrypted with the same key, the corresponding cipher-
texts will be different. This is a nice property and can be used to make a
correlation between requests in the PIR scheme impossible.

4.2.1 RSA

RSA [42], which is named after its inventors Rivest, Shamir and Adleman, is
one of the most famous public key encryption algorithms.

Key generation

1. Choose large prime numbers p and q.

2. Compute the modulus n = pq.

3. Compute the totient φ(n) = (p − 1)(q − 1).

4. Choose an integer e such that 1 < e < φ(n) and coprime with φ(n)
(gcd(e, φ(n) = 1)).

5. Compute d such that de ≡ 1 (mod φ(n)).

6. Publish public key (n, e) and keep private key d secret.

Encryption
The encryption of a message m is c = E(m) = me mod n.

Decryption
The ciphertext c is decrypted by calculating cd mod n = med mod n = m.

Homomorphic property
E(m1) · E(m2) = me

1m
e
2 mod n = (m1m2)

e mod n = E(m1 · m2).

4.2.2 ElGamal

ElGamal [20] is a public key encryption algorithm which is based on the Diffie-
Hellman key agreement protocol [17].

Key generation

1. Generate a cyclic group G = 〈g〉 with order q = |G|.

2. Randomly choose x ∈R {0, . . . , q − 1}.

68 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

3. Compute h = gx.

4. Publish public key (G, q, g, h) and keep private key x secret.

Encryption

1. Randomly choose y ∈R {0, . . . , q − 1}.

2. The encryption of a message m is c = (c1, c2) = E(m) = (gy,m ·hy).

Decryption
The ciphertext c = (c1, c2) is decrypted by calculating

c2

cx
1

=
m · hy

gxy
=

m · gxy

gxy
= m. (4.2)

Homomorphic property
E(m1)·E(m2) = (gy1 ,m1·h

y1)·(gy2 ,m2·h
y2) = (gy1+y2 , (m1·m2)h

y1+y2) =
E(m1 · m2).

4.2.3 Goldwasser-Micali

The encryption algorithm of Goldwasser and Micali [27] was the first proba-
bilistic public key encryption algorithm. Although it is not very efficient (the
ciphertexts are several hundred times larger than the plaintext), it is often used
as a proof of concept.

Key generation

1. Choose large prime numbers p and q.

2. Compute n = pq.

3. Choose a quadratic non-quadratic residue x ∈ Zn with Jacobi symbol
(

x
n

)

= +1. This means that the Legrendre symbols
(

x
p

)

=
(

x
q

)

=

−1.

4. Publish public key (x, n) and keep private key (p, q) secret.

Encryption

1. Choose a random y ∈R {0, . . . , n − 1}.

2. The encryption of a bit m ∈ {0, 1} is c = y2xm mod n.

4.2. HOMOMORPHIC ENCRYPTION 69

Decryption
Using the factorisation of n it can easily be determined whether the ci-
phertext c is a quadratic residue (m = 0) or not (m = 1).

Homomorphic property
E(m1) · E(m2) = y2

1xm1 · y2
2xm2 = (y1y2)

2xm1+m2 = E(m1 ⊕ m2), where
⊕ is the addition modulo 2 (xor).

4.2.4 Paillier

Paillier’s probabilistic public key encryption algorithm [40] is based on the com-
posite residuosity assumption and is often used because of its additive homo-
morphic property.

Key generation

1. Choose large prime numbers p and q.

2. Compute the modulus n = pq and λ = lcm(p − 1, q − 1).

3. Select a random integer g ∈R Z
∗
n2 .

4. Ensure that n divides the order of g by checking the existence of the
multiplicative inverse µ = (L(gλ mod n2))−1 mod n, where L(u) =
u−1

n
.

5. Publish the public key (n, g) and keep the private key (λ, µ) secret.

Encryption

1. Randomly choose r ∈R Z
∗
n2 .

2. The encryption of a message m ∈ Zn is c = gm · rn mod n2.

Decryption
The ciphertext c is decrypted by calculating L(cλ mod n2) · µ = m.

Homomorphic property
E(m1) ·E(m2) = (gm1 · rn

1) · (gm2 · rn
2) = gm1+m2 · (r1r2)

n = E(m1 + m2).

70 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

4.2.5 Boneh-Goh-Nissim

The public key encryption algorithm of Boneh, Goh and Nissim [11] is currently
one of the few encryption algorithm with both additive and multiplicative ho-
momorphic properties. It allows multiple addititions and a single multiplication
to be performed directly on the encrypted values.

Key generation

1. Choose two primes p and q.

2. Generate two multiplicative groups G and G1 of order n = pq and a
bilinear map e : G × G → G1 such that for all u, v ∈ G and a, b ∈ Z,
we have that e(ua, vb) = e(u, v)ab. It is also required that if g is a
generator of group G then e(g, g) is a generator of group G1.

3. Choose two random generators g, u ∈R G.

4. Calculate the generator h = uq of a subgroup of G of order p.

5. Publish public key (n, G, G1, e, g, h) and keep private key p secret.

Encryption

1. Choose a random r ∈R {0, . . . n − 1}.

2. The encryption of a message m is c = gmhr ∈ G.

Decryption
To decrypt the ciphertext c first compute cp = (gmhr)p = (gp)m = ĝm and
then use Pollard’s ρ-method [41] to calculate the discrete log to retrieve
m.

Homomorphic property
Unlike other homomorphic encryption schemes, Boneh, Goh and Nis-
sim support both an unlimited number of additions and a single mul-
tiplication. It is additive homomorphic in G because E(m1) · E(m2) =
gm1hr1 · gm2hr2 = gm1+m2hr1+r2 = E(m1 + m2).

The bilinear map e is used for the multiplication. Let c1 = gm1hr1 and
c2 = gm2hr2 two encryptions in G. Further define g1 = e(g, g) ∈ G1,
h1 = e(g, h) ∈ G1 and r ∈R Zn. The multiplication is then calculated as
follows:

4.2. HOMOMORPHIC ENCRYPTION 71

c = e(E(m1), E(m2))h
r
1 = e(c1, c2)h

r
1

= e(gm1hr1 , gm2hr2)hr
1

= e(gm1+αq2r1 , gm2αq2r2)hr
1

= e(g, g)(m1+αq2r1)(m2αq2r2)hr
1

= g
m1m2+αq2(m1r2+m2r1+αq2r1r2)
1 hr

1

= gm1m2

1 hm1r2+m2r1+αq2r1r2+r
1

= gm1m2

1 hr̂
1

= E(m1m2)

(4.3)

Note that the additive homomorphic property also holds for G1.

Both additive and multiplicative properties combined, result in a homo-
morphic encryption scheme that can calculate

E





∑

j

((

∑

i

xi,j

)

·

(

∑

i

yi,j

))



 , (4.4)

given the encryptions of the xi,j ’s and yi,j ’s. The second and third sum-
mations are performed within the group G. With the multiplication we
jump from G to G1. The leftmost summation is performed within the
group G1. Equation (4.4) can be simplified by moving all the summations
to G1 using the distributive property to

E





∑

i′,j′

xi′ · yj′



 . (4.5)

4.2.6 Domingo-Ferrer

The privacy homomorphisms of Domingo-Ferrer [18, 19] are both additive and
multiplicative homomorph. Originally, they were designed to withstand known-
plaintext attacks. However, they were succesfully attacked by Cheon and Nam
[12] and by Wagner [49] in the known-plaintext scenario. They are still secure
in the ciphertext-only scenario.

Key generation

1. Choose a positive integer d > 2 and a large integer n (≈ 10200 or
larger, having many small divisors).

72 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

2. Choose secret r ∈ Zn (such that r−1 mod n exists) and n′ which is a
small divisor of n.

3. Publish public key (n, d) and keep private key (r, n′) secret.

Encryption

1. Randomly split the message m into secrets m1, . . . ,md such that
m = m1 + · · · + md mod n′ and ai ∈ Zn.

2. The encryption of message m is c = (m1r mod n, . . . ,mdr
d mod n).

Decryption

1. Multiply each of the coordinates with r−i where i is the index, to
retrieve (m1 mod n, . . . ,md mod n).

2. The decription is the sum m1 + · · · + md mod n′.

Homomorphic property

1. E(a)+E(b) = (a1r1 mod n, . . . , adr
d
1 mod n)+(b1r2 mod n, . . . , bdr

d
2 mod

n) = ((a1 + b1)r
′ mod n, . . . , (ad + bd)r

′d mod n) = E(a + b).

2. Multiplication works like in the case of polynomials: all terms are
cross-multiplied in Zn. A d1th degree term times a d2th degree term
yields a d1 + d2 degree term. Terms of equal degree are added to-
gether.

4.3 Private information retrieval

One of the applications of homomorphic encryption is Private Information Re-
trieval (PIR). In this section we give an example which uses the Goldwasser-
Micali scheme (section 4.2.3) [39]. Goldwasser-Micali is the first probabilistic
public-key encryption scheme which is secure under standard cryptographic as-
sumptions and therefore often used as a proof of concept. It should be noted
that more efficient solutions exists today.

Notation 4.3.1 In this chapter a shorthand notation for a homomorphic en-
cryption is being used. The homomorphic encryption of an element x is written
as x , which should be read as x ∈R Ek(x) (i.e. x is a randomised encryption
of x) for some public key k and encryption function E. Note that since almost
all homomorphic encryption schemes are also probabilistic, it is not always the

4.3. PRIVATE INFORMATION RETRIEVAL 73

case that two encryptions of the same element are the same. Thus x = y 6⇒
x = y .

When a variable x holds the encryption of a value v it will be written as the
equality x = v , rather than the more cumbersome x ∈R v .

Each database is essentially a list of bits. In this section we will group the
bits to form m-bit values. We partition a database into an m×n-matrix. Each
column is an m-bit value.

D =







d1,1 · · · d1,i · · · d1,n

...
...

...
dm,1 · · · dm,i · · · dm,n






, (4.6)

where dk,j ∈ {0, 1}. This database D is stored in plaintext on the server.
To privately retrieve the ith column, the user creates a vector

q =







q1

...
qn






, (4.7)

where qj is the tuple

qj = 〈vj , wj〉 =







〈

0 , 1
〉

if i = j
〈

0 , 0
〉

if i 6= j.
(4.8)

This vector of tuples is sent to the server. Since the server cannot distinguish
0 from 1 it does not learn which element is requested. The server replaces

each value dk,j in the database by vj if it is 0 and with wj otherwise. The
computed database then looks like

D′ =









0 · · · 0 d1,i 0 · · · 0

...
...

...
...

...

0 · · · 0 dm,i 0 · · · 0









. (4.9)

In the next step the server multiplies all elements of a row together. With
the homomorphic property x · y = x ⊕ y the encryption of the requested

column can be calculated:

74 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

a =









d1,i

...

dm,i









. (4.10)

This answer vector is sent to the user who can decrypt it with his private
key.

4.4 Cryptographic extensions to PIR

Although PIR protects the query and the query result, it does not protect the
stored data. In this section some extensions to PIR are being investigated. All
those extensions have one thing in common: they all try to use techniques that
are similar to PIR, but work on encrypted data instead of plaintext. Figure 4.1
shows all the extensions in a graph. The nodes represent the extensions and
will be explained later in this section. An edge from node A to node B denotes
that B fixes a problem that exists in solution A.

PIR leaves the stored data in the clear. Both the bitmap approach and the
dual homomorphic approach encrypt the stored data. The drawback of the bit
map approach is the size of the queries. Range queries and storing pre-loaded
query vectors tackle this problem. Storing the query vectors on the server takes
valuable space. Using stored query templates reduces the storage costs. Another
problem of the stored query vector approach is that duplicate queries can be
detected. Three techniques (replacement, shift and addition) can be used to
refresh the stored queries.

The second branch in figure 4.1 consists of two techniques that do not use
a bit map. One uses a dual homomorphic encryption scheme which is based on
Domingo-Ferrer [18,19]. The other uses a polynomial encoding.

In the rest of this section the proposed extensions to PIR will be explained
in more detail.

For a database that consists of a set of integers, there are two kinds of
queries:

1. ‘Give me the data that is stored at this location’.

2. ‘Tell me whether (and possibly where) this value is stored in the database’.

4.4. CRYPTOGRAPHIC EXTENSIONS TO PIR 75

bit map

range queries store query vectors

store query templates replacement shift addition

dual homomorphism polynomial extension

PIR

Figure 4.1: Research directions.

The first query can be answered by standard PIR systems even when the
integers are encrypted. The answer will of course be the encrypted value which
only the requestor can decrypt.

To answer the second query, several extensions are being proposed in this
section. Each extension stores the same database D of n values. Each value
di ∈ ZN is unique.

The same notation for homomorphic encryption will be used as in 4.3.1.

4.4.1 Bit map

Our bit map extension is based on the PIR system that is described in sec-
tion 4.3. That PIR system is only capable of answering the first kind of queries.
We therefore transform the data of that system into a bit map. If the original
database contains the set of values D = {d0, . . . , dn−1} (with di ∈ ZN), it is

possible to encode this with the bit map D̂ = {d̂0, . . . , d̂N−1} (with d̂i ∈ {0, 1}),

such that di ∈ D ⇐⇒ d̂di
= 1. In other words the bitmap D̂ has one bit for

every element in ZN . If the bit at location i is 1 this means that the value i is
in the database and 0 means that it is not.

This bit map can easily be encrypted by any semantically secure encryption
algorithm. Any algorithm of section 4.2 except RSA (which is not semantically
secure) will do. The algorithm is required to be semantically secure because
otherwise there would only be two values in the encryption of D̂: the encryption

76 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

of 1 and the encryption of 0, which would make it very simple for an attacker to
guess (with 50%-probability) which elements are in D and which ones are not.
The algorithm is not required to have a homomorphic property.

Let · : {0, 1} → {0, 1}m be a semantically secure encryption algorithm,
where m is an integer that depends on the chosen homomorphic encryption
function. The encrypted database is simply the list of all the encrypted bits:

D̂ =

{

d̂0 , . . . , d̂N−1

}

. (4.11)

Since all these values are semantic secure encryptions, an attacker cannot
distinguish the encryptions of 0’s from the encryptions of 1’s.

The encrypted database D̂ can be encoded as an m × N -matrix of bits.
Standard PIR, like the one presented in section 4.3, can be used to obliviously

retrieve the i-th column, i.e. d̂i .
The bit map has the following advantages and disadvantages:

pro’s

• Due to the PIR-method used, the server does not learn which value
is being asked for.

• Because the values in D̂ are encrypted semantically secure, the
server does not learn the stored values either.

con’s

• Compared to the size of the unencrypted database D, which is n log2 N

bits, the size of the encrypted database D̂ , which is Nm, is rather
big.

• The communication costs are unacceptably high. A single query
costs 2Nm bits. The answer, which is the vector a from section 4.3,
contains m encryptions of size m bits each. The total costs are 2Nm+
m2.

The plaintext database or a database encrypted with a normal block
cipher like DES or AES only takes n log2 N bits. Therefore the com-
munication costs exceed the storage size of such a database. Using
range queries (section 4.4.2) or storing query vectors (section 4.4.3)
or query templates (section 4.4.4) on the server reduce the size of the
queries.

4.4. CRYPTOGRAPHIC EXTENSIONS TO PIR 77

4.4.2 Range queries

An effective way to shorten the query q (see section 4.3) is to query only over
a particular range of the database. If you want to know if an element e is in
the database (e ∈ D or in other words d̂e = 1), a range R̂ = {d̂a, . . . , d̂b} can be
chosen such that a ≤ e ≤ b. Instead of querying over the complete database D̂
we restrict ourselves to the much shorter range R̂. The query

q =







q0

...
qN−1






, (4.12)

which was used for searching in the complete database, can be cut off at both
sides to

q′ =







qa

...
qb






. (4.13)

Of course we also have to give the range variables a and b to the server,
giving away a bit of information. It is up to the user how much privacy he is
willing to sacrifice for better efficiency. This brings us to the following pro’s and
con’s:

pro’s

• The query length is linear in the size of the range. The query vector
has b − a + 1 elements, each of which is a tuple of two encryptions.
The query size is therefore |q′| = 2m(b − a + 1) and is adjustable by
choosing a and b. The answer takes m2 bits, which leads to the total
communications costs of 2m(b − a + 1) + m2 bits.

con’s

• The server learns the interval in which the requested element e lies.
Both the security and the efficiency are affected by the choice for a
and b. A smaller range increases the efficiency but decreases security.

4.4.3 Stored query vectors

Another way to reduce the size of a query is to preload the server with all possible
query vectors. The server stores, apart from the data itself, the following set of

78 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

‘unit vectors’.
V = {v0, . . . , vN−1}, (4.14)

where

vi =





vi,0

· · ·
vi,N−1



 and vi,j =

{

〈 0 , 1 〉 if i = j

〈 0 , 0 〉 if i 6= j
(4.15)

The set of vectors V is stored in a permuted order to hide as much informa-
tion from the server as possible. The only thing the server knows about V is
that it stores all the ‘unit vectors’, but it does not know which is which.

When a client wants to use one of the query vectors it does not have to
transmit the whole vector. The client can merely give the (permuted) index to
one of the vectors. The server then uses the associated vector in the same way
as if the vector was transmitted (see section 4.4.1).

The costs have been shifted from communication to storage. More specifi-
cally, using stored query vectors has the following pro’s and con’s:

pro’s

• The server stores N vectors. To point to one of them, an index of size
log2 N bits is needed. This is much less than the 2mN bits that is
needed to transmit a whole vector and therefore much more efficient.
The answer is still m2 bits, which brings the total communication
costs to log2 N + m2.

con’s

• An obvious drawback of storing the set of vectors V is that it takes
valuable storage space. An extra 2mN2 (i.e. N ‘unit vectors’ of N
tuples of 2 encryptions each) bits is needed. Using query templates
(section 4.4.4) reduces the needed storage space.

• When the same element is queried twice, the same vector (and there-
fore the same index) is used for each query. The server learns that
these queries are equal. In most situations this may not be a prob-
lem, but in some other situations the extra information the server
learns may be unwanted. If, for instance, two different users ask for
the same element, the server can link the two. If this linkability is
unwanted, the set of query vectors should be refreshed from time to
time in order to prevent double usage. Sections 4.4.6-4.4.7 give some
suggestions how to refresh V .

4.4. CRYPTOGRAPHIC EXTENSIONS TO PIR 79

4.4.4 Stored query templates

Instead of storing all the query vectors on the server, query templates can be
stored. Let T be a set of l query templates. Each template is a vector of variable
names.

T = {ti | 0 ≤ i < l; ti = (ti,0, . . . , ti,N−1); ti,j ∈ W} (4.16)

W = {w0, . . . , wc−1} is a set of variable names with 1 ≤ c ≤ N . Each

variable which will bind to a tuple of two encrypted values 〈 0 , x 〉 for some
concrete value x ∈ Z in an actual query.

T is stored at the server. The client can either store a copy of it or query
the server when it needs some of the templates.

When a client wants to query for the occurrence of an element e ∈ D (or

equivalent d̂e = 1), it should somehow construct the eth ‘unit vector’. It can do
so by choosing an appropriate subset T ′ = {t′0, . . . , t

′
k−1} ⊆ T and a binding for

all the free variables in T ′. The query vector ve is then the linear combination

ve = λ0t
′
0 + · · · + λk−1t

′
k−1, (4.17)

where the λ’s are calculated by the client.

Notation 4.4.1 In the following example we will use the following notation:

x = 〈 0 , x 〉. (4.18)

For vectors of this kind of tuples, the following concatenation is used

x1 · · ·xn =







x1

...
xn






(4.19)

For an expression expr under a binding W = {w0 7→ x0, . . . , wc−1 7→ xc−1} we
will use the notation

expr[W 7→ x0 · · ·xc−1]. (4.20)

Example 4.4.2 Consider a server that stores the following query vector tem-
plates:

T =





t0
t1
t2



 =





w0 w0 w1 w2 w1

w1 w2 w0 w1 w1

w2 w1 w0 w0 w0



 (4.21)

80 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

It can be shown that all ‘unit vectors’ can be constructed as a binding for
w0, w1, w2 and a linear combination of a subset of queries from T . The list
below is not complete. Only a small number of possible linear combinations are
shown.

v0 = 10000 = t2[W 7→ 001]
v1 = 01000 = t2[W 7→ 010] = t1[W 7→ 001]
v2 = 00100 = t1[W 7→ 100] =
1
2 t1 + 1

2 t2[W 7→ 1(−1)1] = 2
21 t0 + 3

21 t1 + 2
21 t2[W 7→ 5(−2)(−2)]

v3 = 00010 = t0[W 7→ 001]

v4 = 00001 = 1
3 t0 + 1

3 t1 + 1
3 t2[W 7→ (−1)2(−1)]

(4.22)

A user can tune the balance between communication and storage costs by
choosing an appropriate set of templates. Storing more templates takes space
but can make the linear combination with the corresponding variable binding
simpler and thus smaller to transmit. The user has to ensure that with the
chosen set of templates all the ‘unit vectors’ can be built. This brings us to the
pro’s and con’s of using stored query templates:

pro’s

• The server stores only the query templates. For l query templates
and c different variable names, the storage costs are l log2 c bits. Since
typically l ≪ N and c ≪ N this is far better than the 2mN2 bits
that are necessary to store all the ‘unit vectors’.

• There is a trade-off between storage and transmission costs. If more
templates are stored, the chances are high that there exists a subset
of templates with only a few free variables. If, on the other hand, the
stored templates form a minimal basis, then the chances are high that
you need nearly all templates and need to bind almost all variables.
It is up to the user to make the trade-off.

• There are multiple ways to construct a ‘unit vector’. Asking the
same element twice can be hidden by choosing two different linear
combinations with two different bindings. This reduces the need to
refresh the stored vectors considerably.

con’s

• The transmission costs are higher than in the case where the ‘unit
vectors’ are stored. Choosing an appropriate set of query templates,
however, will ensure that the number of bindings will not be too big.

4.4. CRYPTOGRAPHIC EXTENSIONS TO PIR 81

• Both the server and the client have some work to do. The client
should choose a suitable linear combination. The number of free
variables should be minimized, because the majority of the transmis-
sion costs are made up of the bindings. The server has to construct
the ‘unit vector’ before it can be used to find the desired element.

4.4.5 Replacement

The problem of the storing preloaded queries on the server is that queries that
are asked more than once can be linked to each other. This happens because
the stored queries are reused over and over again. To prevent this reuse, the
stored queries should be refreshed from time to time. A very easy way to do
so is by replacing all the stored queries from time to time. This replacement is
expensive in terms of bandwidth and should therefore not be used more than
strictly necessary. The bandwidth can be spread over time by replacing only
parts of the stored vectors.

pro’s

• The server cannot link the query vectors before and after the replace-
ment. Therefore queries that are being asked for after a replacement
cannot be linked to earlier queries.

con’s

• For the replacement of all N vectors (with N tuples of 2 encryptions),
2mN2 bits have to be transmitted over the network.

4.4.6 Shift

The major drawback of the previous method to refresh the stored query vectors,
is the large network bandwidth that is needed. It can be reduced to ‘only’ 4mN
bits by the following shift method.

The set of stored ‘unit vectors’ V can be written in matrix notation:

V =







v0

...
vN−1






=







v0,0 · · · v0,N−1

...
...

vN−1,0 · · · vN−1,N−1






. (4.23)

This matrix can be shifted one position to the left. The client knows how
the ‘unit vectors’ are permuted and therefore knows which value of the left

82 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

most column is the encryption of 1. The client encrypts a fresh column. The
encryptions of the zeros and ones stay at the same place as the old column.
Because a semantically secure encryption algorithm is used, the re-encrypted
column has become different. This re-encrypted column is transmitted back to
the server and will be the new right column. V has been transformed to

V ′ =







v0,1 · · · v0,N−1 v′
0,0

...
...

...
vN−1,1 · · · vN−1,N−1 v′

N−1,0






. (4.24)

The shift method is probably the best way to refresh the stored query vectors.
However, besides the advantages it also have some slight disadvantages:

pro’s

• The shift method is less expensive in terms of transmitted bits than
a total replacement.

con’s

• After N shifts the ‘unit vectors’ are in the same order again. If the
same query is asked after exactly a multiple of N shifts the server
can detect that they are the same. This is only problematic when
the same query has been asked for more than N times (since the
vectors can always be shifted one more time). If this is the case, the
stored vectors should be refreshed in another way (for instance with
addition (section 4.4.7) or substitution (section 4.4.5).

• The client should not only remember how the ‘unit vectors’ are per-
muted, but also how many times the server has shifted its vectors.

4.4.7 Addition

Another way to refresh the stored vectors is to add a newly transmitted vector
to all the stored vectors. However, the stored vectors are no longer ‘unit vectors’
after an addition. It is not even guaranteed that the vectors form a basis any
more.

pro’s

• The number of bits to transmit is halved compared to the shift
method.

4.4. CRYPTOGRAPHIC EXTENSIONS TO PIR 83

con’s

• The stored vectors are no longer ‘unit vectors’. More than one vector
is involved for each query. The client should come up with a suitable
linear combination.

• The client should have a good bookkeeping to know which vectors can
be used for a query and which query should be added to ensure that
the stored vectors still form a basis. If the stored vectors does not
form a basis any more than not all ‘unit vectors’ can be reconstructed.

4.4.8 Dual homomorphic encryption

In this section we propose a different solution than the bit map approach. This
approach does not need to transform the set of integers to a bit map prior to
the storage at the server. The database D = {d0, . . . , dn−1} with di ∈ ZN can

be directly encrypted to D = { d0 , . . . , dn−1 }, where · : ZN → {0, 1}m is a

homomorphic encryption function which needs the property of equation (4.25).

∏

1 ≤ i ≤ n
1 ≤ j ≤ m

(xi + yj) = f(x1 , . . . , xn , y1 , . . . , ym) (4.25)

This equation states the homomorphic property that (the encryption of the)
the product of the sum of two elements can be calculated given only the encryp-
tions of the elements. In other words, the homomorphic encryption function
can multiply multiple times but can only add once in a sequence.

The encryption method of Domingo-Ferrer [18,19] allows us to calculate this
product of sums, given only the encryptions of the components.

A query d
?
∈ D is encrypted to −d before it is transmitted to the server.

Using the single additive homomorphic property, this value is added to each

element in the encrypted database forming D′ = { d0 − d , . . . , dn−1 − d }. If

d is in the database then one of these encryptions is 0 . Using the multiplica-
tive homomorphic property all these values can be multiplied together. The
product is either 0 indicating that d ∈ D or the encryption of a non-zero value
indicating that d 6∈ D.

Both communication and storage costs are low. More specifically:

pro’s

84 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

• Because only the elements that are in the database are stored, the
storage costs are kept low. More precisely, n encryptions of m bits
each have to be stored, which brings the total storage costs to nm
bits.

• The query consists of a single encrypted value (of m bits). The answer
consists of a single encryption too. Thus the transmission costs are
kept low (i.e. 2m bits).

con’s

• The security is based on the security of the underlying encryption
method of Domingo-Ferrer. The encryption function has been broken
for the known-plaintext scenario [12,49]. However, it is still supposed
to be secure in the ciphertext-only scenario.

4.4.9 Polynomial extension

With a standard additive homomorphic encryption function like Paillier (sec-
tion 4.2.4) it is possible to evaluate an encrypted polynomial in a given (plain-
text) point. With an encrypted polynomial we mean a polynomial of which the
coefficients are encrypted. For instance, a polynomial

f(x) = α0 + α1x + α2x
2 + · · · + αn−2x

n−2 + αn−1x
n−1 (4.26)

can be represented as a list of encrypted coefficients { α0 , . . . , αn−1 }.

Paillier is used for the encryption. Therefore, x + y = x · y and for a

constant plain text value c: cx = x
c
. When the encrypted coefficients and a

plaintext value v are given to the server , it can calculate the encryption of the
evaluation of the polynomial f in point v, that is

f(v) = α0 + α1v + α2v
2 + · · · + αn−2v

n−2 + αn−1v
n−1

= α0 · α1v · α2v
2 · · · αn−2v

n−2 · αn−1v
n−1

= α0 · α1
v
· α2

v2

· · · αn−2
vn−2

· αn−1
vn−1

(4.27)

Using the Horner scheme [34] this polynomial can be calculated with only
n additions and n multiplications. This homomorphic polynomial evaluation
can be used in a PIR setting. Consider a database D = {d0, . . . , dn−1} with

4.4. CRYPTOGRAPHIC EXTENSIONS TO PIR 85

di ∈ ZN . Instead of storing the values in plaintext like PIR, the values are used
to form the polynomial

f(x) =
n−1
∏

i=0

(x − di) =
n
∑

i=0

αix
i. (4.28)

The encrypted coefficients { α0 , . . . , αn } are given to the server. A query

in the form of ‘does a value v exists in the database’ (v
?
∈ D) is translated

to f(v)
?
= 0. The server cannot evaluate f in v directly. However, it can

calculate f(v) . This way, the server does not learn the answer to the query,

but it still learns the query. The latter can easily be solved by not using the
di’s and v directly. Instead use the encryptions E(di) and E(v). Here the
encryption function can be any deterministic encryption function. The most
efficient however, is a traditional symmetric block cipher like AES. In order for
it to work, the function f(x) should be changed to

f̂(x) =

n−1
∏

i=0

(x − E(di)) =

n
∑

i=0

α̂ix
i. (4.29)

The query v
?
∈ D will now be translated to f̂(E(v))

?
= 0. The server can

calculate f̂(E(v)) just like before.

This polynomial extension to PIR is very efficient for static databases. For
dynamic databases it is less efficient, because for each update all the encrypted
coefficients will change. Since the client has to calculate them, they have to be
transmitted (twice) over the network. In summary, the pro’s and con’s are:

pro’s

• The storage costs are low. Assuming that the homomorphic encryp-
tion is a function · : ZN → ZM , the server should store n coefficients
of log2 M bits each. The total storage therefore becomes n log2 M .
In the case of Paillier M = N2. Compared to the storage of the
plaintext values d0, . . . , dn−1 the storage costs are doubled.

• Communication cost of a query is low. The client transmits E(v)
which takes log2 N bits. It receives an encryption which takes log2 M
bits. Total communication costs are therefore log2 N + log2 M bits.
If the server was storing the plain text values, the communication
cost would have been log2 N + 1.

86 4. EXPLORING CRYPTOGRAPHIC EXTENSIONS TO PIR

con’s

• When a client asks the same query twice, the server will notice this.

• Updates to the database are expensive. Each time a value is changed,
deleted or added, a new polynomial should be constructed. The
server cannot do this, so all the coefficients should be transmitted to
the client, which performs the update and sends the updated coeffi-
cients back. Although the client does not need the storage capacity
for all the coefficients (the operation can be streamed), the communi-
cation costs are proportional to the size of the database, which makes
this solution only useful for static databases.

4.5 Conclusion and future work

There are several methods to extend PIR with encryption of the stored data.
However, none of the presented solutions is perfect. Each of them has one or
more drawbacks. Some of them have high storage requirements while others
have high communications costs. Table 4.1 gives the storage requirements and
the communication costs of all the extensions based on the PIR method of
section 4.3. Note that the PIR method used throughout this chapter, which
has communication complexity that is in the order of the square root of the
number of bits in the database, is not the most efficient one that is around. For
instance, the PIR method used by Gentry and Ramzan [24] has a communication
complexity of O(k + d) where k is a security parameter that is larger than the
logarithm of the number of bits in the database and d is the size of the bit
blocks. Adapting our extensions to the PIR method of Gentry and Ramzan
may decrease the communication costs considerably.

The solutions that use an encrypted bit map to represent the data, all need a
large storage capacity. It depends on the context whether this is a real problem
or just an inconvenience. The communication costs can be reduced by using
range queries or stored query (template) vectors. Also a combination is possi-
ble. For instance, the combination of range queries and stored query vectors is
better than each of the solutions separately. The query is shorter than in either
solution. Also, the combined solution is much less sensitive to the detection
of duplicate queries than the stored query vector approach alone. The same
element can be queried with different ‘unit vectors’ if the range is shifted to the
left or the right. Therefore less refreshments of the vectors are needed.

The stored query approach solves the problem of the large transmission costs

4.5. CONCLUSION AND FUTURE WORK 87

Table 4.1: Storage requirements and communication costs of all the presented
extensions to PIR. The parameters used are n (number of stored values), N
(values di ∈ ZN), m (size in bits of a single encryption), l (number of stored
query templates), c (number of variable names used in the query templates).
The communication costs of the stored query template approach depend on the
stored query templates. Therefore, a lower and an upper bound is given.

storage size communication costs
plaintext n log2 N log2 N + 1
PIR n log2 N 2nm + m2

bitmap Nm 2Nm + m2

range query over {d̂a, . . . , d̂b} Nm 2m(b − a + 1) + m2

stored query vectors Nm + 2mN2 log2 N + m2

stored query templates Nm + Nl log2 c [log2 l + m, lm + cm]
dual homomorphism nm 2m
polynomial extension (n + 1)m 2m
replacement 2mN2

shift 2mN
addition 2mN

but introduces the problem of duplicate query detection. The latter may or may
not be a problem. It depends much on the usage of the system. If, for instance,
the system is a single user database, then the detection of a duplicate query
does not leak much information. In a multi user database however, the linkage
between two persons asking the same query may be undesirable. Duplicate
query detection can be avoided by refreshing the stored query vectors from time
to time. It is best to use a combination of shifting and replacing. The shift
should be used until the cycle is complete. After N shifts a total replacement
is needed.

The dual homomorphic encryption approach seems ideal. It has low storage
and transmission costs.

The approach using the encrypted polynomials does not have such a doubtful
assumption. It has low storage and communication costs. For static databases
this solution is very efficient. Updates, however, are much less efficient.

Concluding, we can say that using homomorphic encryption to encrypt the
stored data of a PIR database is possible, but that further research is needed
to increase the efficiency.

Chapter 5

A lucky dip as a secure

data store

Most crypto systems rely on the computational complexity of break-
ing them. Historical evidence suggests that all such systems in use
nowadays will be broken some day, it is just a matter of time. Even
though this time may be long, it may very well be possible that data
remains sensitive for this very long time. In this chapter we propose
the principle of a lucky dip as a data store, that is secure even under
the assumption that an attacker has unlimited computational power.
Before a message is put into the lucky dip it is compressed and split
into multiple shares. All these shares are mixed with shares of the
other messages already in the lucky dip. Due to the large number
of shares it is (1) infeasible to try all possible combinations (com-
putational assumption) and (2) impossible, even with infinite com-
putational power, to distinguish actual messages from recombined
shares that look genuine but which have never been inserted as such
(information theoretic assumption).

89

90 5. A LUCKY DIP AS A SECURE DATA STORE

5.1 Introduction

The security of almost all crypto systems (except the one-time-pad) used today
is based on the computational complexity of a brute force attack. These systems
assume that the encryption function is computationally not invertible, whereas
we know there exists at least one inverse: the decryption function. Every crypto
algorithm that uses a key can be broken by trying all possible keys. It is just a
matter of waiting long enough for the computation to finish or for the computers
to become fast enough. According to Moore’s Law [38] the processing power
of computers is doubled every 18 months. Thus, what seems unbreakable now,
will eventually be broken somewhere in the future.

Normally this causes no problem since most data gradually loses its value
and secrecy when time elapses. Other data, however, stays sensitive indefinitely.
A typical example is medical data, for instance DNA, which should never be
revealed to the public. It can contain highly sensitive data, for many generations
to come.

In this paper we introduce a secure storage system that differs from the
standard encryption methods in the sense that we do not solely rely on the
computational complexity of the underlying cryptographic principles. We even
assume that adversaries have infinite computational power.

Informally, our secure storage system splits the data into multiple parts,
mixes them with the parts of other data and puts all those parts into a large
lucky dip. Of course, an attacker with infinite computer power can reconstruct
the original data from all the parts. However, he can also ‘reconstruct’ messages
that were never put in it. And since he cannot distinguish genuine from fake
messages he has no way of knowing which of the reconstructed messages are
genuine.

For example, if an attacker wants to find the account balance of Mr. Smith in
the financial database of a bank, he will find several messages of the form ‘The
account balance of Mr. Smith is XXX’ with many different values for XXX.
Although the attacker learns some information about Mr. Smith’s account
balance, namely that it is one of the found possibilities, it is still pretty useless,
because the attacker has no certainty which of the found possibilities is the
correct one.

In section 5.2 we will explain precisely how the lucky dip works. Section 5.3
analyses its security aspects.

5.2. A LUCKY DIP 91

5.2 A lucky dip

The basic idea is to store several messages owned by different users into a single
lucky dip. Each message is split into multiple parts, which are mixed with
parts of other messages, obscuring which parts belong together. Without any
additional information it is computationally hard to reconstruct the messages.
The only way to reconstruct the messages is to do a brute force search, trying
all possible subsets. The number of guesses grows exponentially in the number
of shares.

Furthermore, the parts can be combined in so many ways that many of
those recombinations look legitimate, although they have never been put into
the lucky dip. An adversary cannot do better than guessing which one is genuine
and which one is fake.

In order, for a legitimate user, to be able to retrieve the messages efficiently,
the parts are annotated by labels. The labels are generated by the user and act
as private keys. The labels, which typically take less space than the messages,
are stored at the client site and will be used to retrieve the parts belonging to
the same message. Typically, only a small fraction of all possible messages is ac-
tually stored in the database. Therefore, the storage requirements for the index
containing the labels is considerably less than that of the messages themselves.
To hide the relation between the labels from an eavesdropper, genuine labels
can be mixed with bogus labels.

5.2.1 Data storage

We assume that each message is divided into blocks of numbers over a finite
field F. In a typical application this finite field will be the binary finite field,
i.e. {0, 1} with binary addition. Each such block is an element of F

n where n is
the block length. For ease of discussion we will assume that all messages have a
fixed length equal to the block length of the shares. That is, all messages mi are

taken from M ⊆ F
n. Each mi is split into k ∈ N parts: mi = m

(1)
i ⊕ · · · ⊕m

(k)
i .

The XOR notation (⊕) is used but any secret sharing scheme will do. Since we
use secret sharing to split the messages into parts we will use the term ‘share’
instead of ‘part’ from now on.

A share m
(j)
i gets label l

(j)
i . The labels can be of any type, but it is most

practical if the labels are elements of L ⊆ F
s where s is the size of the labels,

which is typically much smaller than n. The server stores the lucky dip con-

taining the tuples (l
(j)
i ,m

(j)
i) and the client keeps track of which labels belong

92 5. A LUCKY DIP AS A SECURE DATA STORE

together: (i, {l
(1)
i , . . . , l

(k)
i }).

5.2.2 Private information retrieval in our setting

When retrieving a message mi from the database, the user first retrieves the

corresponding labels l
(1)
i , . . . , l

(k)
i from its own data store. These legitimate la-

bels are mixed with bogus labels before they are sent to the server. The bogus

labels should be in use in the lucky dip. This way the fact that l
(1)
i , . . . , l

(k)
i be-

long together is hidden from the server. The server retrieves both the legitimate

shares m
(j)
i and the bogus shares. The latter ones can easily be filtered out by

the client.
Let the total number of labels requested be ck (c ∈ N) of which only k are

legitimate. Then, an attacker has
(

ck
k

)

possibilities of putting together shares
(i.e. ≈ O((ck)k) choices).

It would be bad if the (c−1)k labels which are sent along with the real labels
to retrieve mi would be different each time the same message mi is retrieved,
because if an attacker is aware of the fact that the user is retrieving the same
message twice, then he will simply take the intersection of the labels sent the
first time and the second time. To prevent this, when requesting the same
message twice, one should make sure that the requested ck labels will always be
the same for a specific message. There are various ways to accomplish this. For
example, one can put each possible label in a pre-set group of c labels; when
desiring one of the labels in this group, one asks for the data connected to each
label in this group. For example, if requesting the data connected with label
l ∈ {0, 1}50, then one always requests the data connected with all labels l′ that
have the first 40 bits in common.

5.2.3 Reusing shares

To further increase the chaos in the lucky dip, different messages, possibly owned

by different users, can share each others shares. For instance let m1 = m
(1)
1 ⊕

m
(2)
1 ⊕ m

(3)
1 , then m2 may be defined by m2 = m

(1)
1 ⊕ m

(2)
1 ⊕ m

(1)
2 , reusing

m
(1)
1 and m

(2)
1 . The purpose of reusing shares is twofold. On the one hand it

reduces the size of the lucky dip, since fewer shares are stored. On the other
hand security is increased.

To quantify the effect of reusing shares with respect to the security and the
size of the lucky dip, we compare two lucky dips: one with and one without
reuse. Assume that each message, except the first one, will be composed of

5.2. A LUCKY DIP 93

k−1 shares that are already in the lucky dip, plus a new share. In this case the
lucky dip reusing shares stores k + h− 1 shares (where h is the total number of
messages) whereas the non-reusing lucky dip stores all hk shares. Thus reusing
shares approximately costs a factor k less in size.

On the other hand: fewer shares reduce the security, since fewer k-tuples can
be taken from the smaller lucky dip. However, it is not as bad as it looks like.
In the non reusing case, the lucky dip randomly partitions its hk shares into h
partitions, whereas in case of reuse an attacker does not have the advantage of
a nice partitioning. In section 5.2.5 we exploit reuse for securing updates.

In the analysis below we assume that the attacker has retrieved all the data
in the lucky dip and tries to find out which shares belong together in order
to retrieve all messages back. In fact, he tries to ‘decrypt’ the entire database.
But, since he has no additional information, there are quite a number of possible
descriptions of which only one is correct.

Without reuse
An attacker does not know which particular partition is chosen, so he
has to investigate all possible partitions. The number of possibilities is
calculated as follows:

1st k-tuple:
(

hk
k

)

2nd k-tuple:
(

hk−k
k

)

· · ·
ith k-tuple:

(

hk−(i−1)k
k

)

· · ·
hth k-tuple: 1

Which makes the total number of possible partitions
∏h−1

i=0

(

hk−ik
k

)

=
∏h

j=1

(

jk
k

)

.

With reuse
In case of reuse an attacker cannot rely on a nice partition. He has to take
h different k-tuples out of a lucky dip of size h + k − 1. Thus, the total

number of possibilities is
(

h+k−1
k

)h
. This number is less than the number

of possibilities in case without reuse, but is still huge.

5.2.4 Threat model

In this paper we categorise attackers according to their capabilities:

94 5. A LUCKY DIP AS A SECURE DATA STORE

see lucky dip at see lucky dip at access to
type a certain moment every moment communication

I X

II X X

III X X X

An attacker of type I (for instance an employee who steals a hard disk)
cannot see any communication, while an attacker of type II (for instance a
backup operator who can make frequent copies of the database) can see updates
and one of type III (for instance a system operator with full control over the
system) can see both updates and read operations. All attackers in our model
are passive. We do not investigate active attackers who modify data in transit or
data stored in the lucky dip. Further research is required to allow the presence
of active attackers. Active attackers may try to corrupt the stored messages by
modifying or deleting shares. Future research is needed to prevent them from
doing so or by detecting such fraudulent actions.

5.2.5 Database operations

Standard database operations are:

• read

• add

• delete

• (modify)

where the last one can be modelled as a 〈delete, add〉 sequence and will thus
not be dealt with here explicitly.

A database system based on the lucky dip principles should take care that
the information leakage is kept low for all these operations. A trade-off should
be decided on between security and efficiency. The lucky dip parameters allow
this trade-off to be specified precisely.

All operations have their own security threats and consequences. Each of
them is summarised below:

read When only attackers of types I and II (see section 5.2.4) are to be taken
care of, no special precautions are needed. However, if there are type III
attackers around, just asking for the k shares leaks the whole message. To

5.2. A LUCKY DIP 95

hide the fact that the k shares belong together, noise can be introduced
by adding b bogus labels to the query. This way, the information leakage
is restricted to the fact that within the k+b shares a message (split over k
shares) is hidden. However, the total number of possible messages is

(

k+b
k

)

and can be very large for a sufficiently large b, which acts as the trade-
off parameter between security and efficiency. When a message is being
retrieved multiple times, it is advisable to use the same set of k + b shares
each time. Not doing so, an attacker may intersect two sets of shares
belonging to two messages guessed to be the same. If the messages are
indeed the same the intersection will almost certainly reveal the k shares.

add A type I attacker is unable to see any updates. Therefore, no precautions
are needed against him.

A type II attacker is best misled by allowing reuse of shares. When k − s
shares are taken from the ones already in the lucky dip, only s (for example
s = 1) shares have to be added. A type II attacker has no clue which other
shares they belong to. This is not true for a type III attacker, since he
can see the retrieval of the k − s shares preceding the update.

To mislead a type III attacker, it is preferable to add many messages at
once. Mixing t messages will result in tk shares. The total number of
recombinations is

∏t

j=1

(

jk
k

)

which may be enough when t is sufficiently
large. When the number of messages to be added is small, then mixing
the real messages with bogus shares will increase the security. To prevent
that the bogus shares allocate valuable storage space, the bogus shares
may be chosen from the ones already in the lucky dip. When the lucky
dip allows reuse of shares, an attacker cannot distinguish a bogus share
and a reused share.

delete
Although the messages to be deleted are old or incorrect (otherwise: why
bother to delete them?), it is still not a good idea to reveal them.

If the number of messages to be deleted (t) is sufficiently large, the mes-
sages are mixed well enough to prevent repartitioning the tk shares into
the t original messages.

When reuse of shares is allowed, deletion of a single share may cause many
messages to get corrupted. Since there is no single entity knowing which
share belongs to whom, it is impossible to safely delete a share without
taking extra measures. One such measure is adding a reference counter to

96 5. A LUCKY DIP AS A SECURE DATA STORE

each share. Each time a share is used as part of a newly added message,
the counter is increased and every time a corresponding message is deleted
it is decreased. To avoid that a type II or III attacker can figure out which
shares belong together by looking at the increase and decrease operations,
these operations should be spread over time. For instance, a client may
reserve a bunch of shares early in time by asking the server to increase
their reference counters. Each time he wants to add a message he can
use some of these reserved shares while not telling the server so. When
deleting, he can mix the real shares with enough reserved (but not used)
shares, to provide enough security. The lucky dip cannot distinguish a
reserved share and a share in use. It will only actually delete the share
when the reference counter reaches zero. A time-out mechanism is another
technique to store only shares that are actually in use.

A time-out mechanism can be used to delete shares which have been ex-
pired. To ensure that his messages are not deleted, a user has to refresh
his shares from time to time. If the user refreshes all its shares at once,
the server cannot link the shares to the individual messages.

5.3 Security aspects

In this section we will use the following notation:

• D is the set of size h of (unshared) messages that are to be stored in the
database.

• S is the set of shares. That is S = {s1, . . . , sk | d ∈ D, {s1, . . . , sk} =
share(d)}, where share(d) is a secret sharing algorithm, splitting a message
d into shares s1, . . . , sk such that d = s1 ⊕ · · · ⊕ sk. The size of S is hk in
case without reuse of shares and k + (k − k̃)(h − 1) in case k̃ shares are
reused for each message. We define s = |S| as the size of S.

• R is the set of messages than can be reconstructed from the shares in S,
that is R = {m | s1, . . . , sk ∈ S;m = s1 ⊕ · · · ⊕ sk}.

• M is the set of possible messages (for instance, all correct English texts).

• T = R ∩ M is the part of R that makes sense.

• U = F
n
2 is the universe containing all strings of n bits.

5.3. SECURITY ASPECTS 97

Further, we assume that messages are represented as fixed sized bit strings,
thus D ⊆ T ⊆ M ⊆ U , T ⊆ R and S ⊆ U .

Stochastic variables are notated using calligraphic letters. Thus D, S, R,
M, T and U are used to denote the stochastic variables belonging to the sets
D, S, R, M , T and U respectively.

5.3.1 Entropy

Definition 5.3.1 (Shannon entropy) The Shannon entropy [45] of a vari-
able X over a set X with probability function Pr is defined as:

H(X) = −
∑

x∈X

Pr(X = x) log2 Pr(X = x). (5.1)

If a set X of size |X| is uniformly distributed, the entropy is just

H(X) = log2 |X|. (5.2)

Assuming that D,S,R,M, T and U are uniformly distributed we have the
following entropies:

H(D) = log2 h ≤
H(T) = α log2

(

s
k

)

≤
H(M) = αn ≤
H(U) = n
H(R) = log2

(

s
k

)

≤ n

(5.3)

where 0 < α ≤ 1 is a compression factor. An English text has an information
value of around 1.3 bits per character. This means that if a perfect compression
algorithm would exist, it will use 1.3 bits to store a character. Thus, α = 1.3/8
if the plaintext uses an 8-bit ASCII encoding. α reaches 1 if all elements of U
are correct values.

5.3.2 Difficulty of finding a message by an attacker

Section 5.2.3 dealt with the difficulty of illegally ‘decrypting’ the entire database.
In this section a more plausible, but less sophisticated, attack is considered:
finding only a single message. We use the same premise as before; the attacker
has retrieved all the data but has not wiretapped any conversation (attack type
I).

98 5. A LUCKY DIP AS A SECURE DATA STORE

We assume that the attacker has an oracle O which states whether a recom-
bination m = s1 ⊕ · · · ⊕ sk adds up to a legitimate message or not. The oracle
is defined as:

O(m) =

{

1 if m ∈ M
0 otherwise.

(5.4)

Furthermore, we assume that the attacker has access to a computer with
unlimited processing power and memory. Given the set of shares S, the attacker
can compute all the recombinations R = {m | s1, . . . , sk ∈ S ∧ m = s1 ⊕
· · · ⊕ sk}. Using the oracle he can even compute the set of possible messages
T = {r | r ∈ R ∧ O(r) = 1}. However, he cannot tell which elements of T are
stored intentionally. In other words, the probability Pr(t ∈ D | t ∈ T) is rather
small:

Pr(t ∈ D | t ∈ T) =
h

2H(T)
=

h

2α log
2 (s

k)
=

h
(

s
k

)α (5.5)

Example 5.3.2 To get a feeling for this probability, let’s give a concrete exam-
ple. Suppose that the lucky dip contains h = 220 ≈ 1 million different messages.
Each message, of size n = 210 = 1 kb is split into k = 16 shares. When reusing
k−1 shares for each message, the lucky dip S contains h+k−1 = 220+26−1 ≈
220 shares, thus s ≈ 220. Then, the probability of guessing correctly whether a
random recombination is an intentionally stored message is

Pr(t ∈ D | t ∈ T) =
220

(

220

16

)

1.3
8

≈ 2−25 ≈ 10−8 (5.6)

Without reusing shares the lucky dip contains s = hk = 224 ≈ 16 million shares.
In that case the probability is much smaller:

Pr(t ∈ D | t ∈ T) =
220

(

224

16

)

1.3
8

≈ 2−35 ≈ 10−11 (5.7)

5.3.3 Using compression

The existence of the oracle O gives an attacker a great advantage. Many re-
combinations in R are not in M , i.e. are not correct English texts. In order to
reduce this advantage, compression can be used prior to the sharing phase. A
good compression algorithm removes all the redundancy from the input data.
In case of a perfect compression algorithm, our factor α reaches 1. In fact, there

5.3. SECURITY ASPECTS 99

is no difference any more between R and T ; the advantage of using the oracle
has gone. The entropy of T is now increased to

H(T) = log2

(

s

k

)

= H(R). (5.8)

As a consequence, the probability of guessing correctly whether a recombination
is in the data set D is reduced to

Pr(t ∈ D | t ∈ T) =
h

2H(T)
=

h
(

s
k

) (5.9)

Example 5.3.3 Using the same values for h, k and s as in example 5.3.2, the
probabilities are

Pr(t ∈ D | t ∈ T) =
220

(

220

16

) ≈ 2−256 ≈ 10−77 (5.10)

with reusing shares and

Pr(t ∈ D | t ∈ T) =
220

(

224

16

) ≈ 2−320 ≈ 10−96 (5.11)

without reusing shares.

5.3.4 Trade-off between security and efficiency

In the previous section we saw that the probability of finding a message put
into the lucky dip can be made as small as you want by choosing a high number
of shares (k) for each message. However, choosing a value for the security
parameter k has great impact on the efficiency of computation, bandwidth and
storage space. With many shares per message a client has to perform more
work to recombine the shares, it takes more time for all the shares to travel
over the network and, probably most important, the client should store more
information. A client has to remember all the labels of the shares of a message.
If there are more shares, also more labels should be stored at the client site.
(The storage space on the server is not influenced by the security parameter k
when shares are being reused.)

For practical purposes, all labels in use should be unique. This causes the
size of a label to be l ≥ log2 s bits, where s is the total number of shares in the
lucky dip. For each message, the client stores kl bits in its label database. Thus,

100 5. A LUCKY DIP AS A SECURE DATA STORE

k should be as small as possible when optimising for efficiency, but maximized
(but not greater than 1

2s) when optimising for security. It is up to the user what
is most important: efficiency or security.

Obviously, we do not want to store more bits for the labels than the length
of the message itself. The upper bound for k is given by the equation: kl ≤ n,
where n is the size (in bits) of a single message. This translates to

1 < k <
n

l
≤

n

log2 s
=

{

n
log

2
h

, with reusing shares
n

log
2

hk
= n ln 2

W (hn ln 2) , without reusing shares
(5.12)

where W is Lambert’s W function. A function W (x) is called a Lambert’s W
function iff W (x) is the inverse of f(x) = xex.

Example 5.3.4 Using the same h = 220 and n = 210 as in our running example
k is bounded by

1 < k ≤
n

l
≤

210

log2 s
≈

{

51, with reusing shares
40, without reusing shares

(5.13)

5.4 Conclusion and future work

Without relying on the assumption that an adversary’s processing power is
bounded, the concept of the lucky dip can be used to store data securely for an
indefinite period of time. The concept consists of three phases: compression,
secret sharing and mixing with other shares.

There is a balance between efficiency and security, which can be tuned by
carefully choosing the security parameter k (i.e. the number of shares per mes-
sage).

Reusing shares helps to keep the size of the lucky dip small, i.e. not substan-
tially larger than the plaintext. Furthermore, update operations are better pro-
tected against an eavesdropper when reusing shares, because the reused shares
do not have to travel over the network. The counter side of having fewer shares
in the lucky dip, is that there are fewer recombinations possible. However, the
number of recombinations is still large enough to safeguard security. Only in a
situation where no attackers listening to the communication are to be expected
and where wasting storage space is not a problem, a non-reusing lucky dip is
favourable.

In this chapter we only considered passive attackers which do not alter mes-
sages in transit and do not alter the data in the lucky dip. Other safeguards

5.4. CONCLUSION AND FUTURE WORK 101

are needed in order to protect the security against active attackers, especially
when shares are being reused, since, in that case, changing one single share may
corrupt several messages at once. This is still being investigated as ongoing
research.

Chapter 6

Conclusions and future

work

Having seen different ways to query encrypted data, one may ask
which one is the best. This is not easy to answer, since each method
has its own advantages and disadvantages. It depends on the require-
ments which one is the most appropriate. In this last concluding
chapter we will sum up the strong points as well as the weaknesses
of all the solutions.

103

104 6. CONCLUSIONS AND FUTURE WORK

6.1 Introduction

In the previous chapters we described a number of search techniques over en-
crypted data and a method of storing data securely for a longer period of time.
In this concluding chapter we compare the search strategies with each other. In
the next section we give all the advantages and disadvantages of the different
search strategies and give guidelines when to use which strategy. Section 6.3
concludes our findings about the secure long term storage.

6.2 Search techniques

Both the solutions that exist in the literature and our new solutions to the first
research question are compared in this section. All solutions have their own
advantages and disadvantages. The solutions that are being compared are:

• The indexing technique of Hacıgümüş et al. [30–33].

• The trapdoor technique of Song, Wagner and Perrig (SWP) [46].

• Our own tree based extension of SWP (chapter 2).

• Our own solution using secret sharing (chapter 3).

• Our own solutions based on homomorphic encryption (chapter 4).

6.2.1 Hacıgümüş et al.

Hacıgümüş et al. encrypt the records of a relational database. Instead of search-
ing in those encrypted records, some meta-data is added. This meta-data con-
sists of the hashes of the plaintext values. The search takes place within this
meta-data. To allow operators like ‘less than’ and ‘greater than’, a user-made
hash function is used instead of a standard cryptographic hash function. The
range of the input data is partitioned into intervals. Each interval is mapped to
a unique value. This unique value acts as the hash. See section 1.2.1 for a more
detailed discussion of Hacıgümüş et al.

Advantages

The index based solution uses a relational database as back-end. Since relational
databases have been around for quite some time, there exist a huge theoretical

6.2. SEARCH TECHNIQUES 105

background and all kinds of efficient indexing mechanisms. Hacıgümüş takes
advantage of this to create an efficient solution, pushing as much of the workload
to the server.

Disadvantages

The efficiency comes at a price, though. The storage cost doubles compared
to the plaintext case. Apart from the encrypted data also the hash values for
each searchable field need to be stored. These hashes are almost as big as the
original values.

Another disadvantage is the fact that the server can link records together
without the cooperation of the client. Values that are equal in the plaintext
domain are also equal in the encrypted domain. Although the opposite does not
hold, the server still learns which records are not the same. Therefore, it can
estimate the number of different values and it can join tables fairly accurately.

A more practical disadvantage is that the user should choose the hash map
in such a way that the intervals are not getting too big or too small. The hash
map strongly depends on the distribution of the plain text values. When the
distribution changes drastically, also the hash map should be redesigned.

6.2.2 SWP

SWP encrypt a text in such a way that it is possible to search for a particular
keyword. The encryption of the keyword is accompanied with a cryptographic
key that depends on the keyword. The key acts as a trapdoor with which the
server can scan through the encrypted text to find the keyword. Since both
the keyword and the stored text are encrypted, the server does not learn which
word was search for. It only learns the locations where the word is found, if it
is found at all.

Advantages

The encryption method of SWP does not need a larger storage space than in
the plaintext case.

When a word occurs multiple times, the encryptions are different, which
makes frequency analysis hard.

Almost the whole workload is done at the server site. Only the encryption of
the keyword and a single hash operation are performed at the client site. This

106 6. CONCLUSIONS AND FUTURE WORK

fact makes this strategy especially useful for lightweight devices like mobile
phones.

Disadvantages

Song’s strategy may be efficient when you only look at storage space, it is not
when looking at computation time. For each query the whole data is being
searched linearly. Thus this strategy does not scale well.

Another disadvantage is that all the words should have the same length.
Padding is used to create equally sized words. However, padding increases the
storage size.

6.2.3 Tree based extension of SWP

In chapter 2 an improvement to the SWP scheme is presented which reduces
the computation time from linear to logarithmic by using more structured data
as input. Instead of unstructured text, XML documents are used. A query
engine supporting the full core XPath has been implemented. It shows that
the search time is small enough for practical use, even for large databases. The
query engine is still in the phase of a prototype. It has been built as a proof
of concept and a way to test the efficiency not to be a commercial product. It
can be extended from core XPath to the full XPath. It is also a good idea to
mix our tree based extension with the original scheme. The tags and attributes
can use our tree based extension, whereas the unstructured text that resides
between the open and close tags can be search by the original scheme.

Advantages

The tree structure of the stored data makes it possible to search in logarithmic
time instead of the linear search time of the original SWP technique. It is not
longer necessary to search through all the text but only the nodes (and their
siblings) that lead from the root node to the answer.

In our solution we also have dropped the requirement of fixed sized keywords,
which is another disadvantage of the original scheme.

Disadvantages

Unfortunately, the reduction of the computation time also causes a slight in-
crease in the communication costs. An XPath query is somewhat longer than
just a single word. Thus instead of transmitting a single (encrypted) keyword

6.2. SEARCH TECHNIQUES 107

with the corresponding trapdoor, an encrypted XPath query has to be trans-
mitted. Depending on the complexity of the XPath expression this is a constant
factor larger, but is still very small.

6.2.4 Secret sharing technique

In chapter 3 we presented a way to represent an XML tree as a tree of polynomi-
als. This tree is split into a client tree and a server tree. Because the client tree
is generated by a pseudo random generator it can be discarded, provided that
the seed is remembered. The search algorithm consists of a secure multi-party
protocol. The polynomials are constructed in such a way that not only infor-
mation of the node itself is used, but also information of all the node’s children.
This makes it possible for the search algorithm to skip entire parts of the tree,
making it quite efficient.

Advantages

The main advantage of the secret sharing strategy is its security. Since all
the data stored on the server is randomly generated, it is just garbage for an
attacker. Even two identical nodes are encrypted differently.

Another advantage is the efficient storage. Although knowledge about the
whole subtree is stored at each node, the storage remains similar in size to the
plaintext.

Disadvantages

A disadvantage, though, are the communication costs. Each node that is being
traversed costs a round trip communication (with very little data) between the
client and the server. Also the workload on the client is similar to the workload
at the server.

6.2.5 Homomorphic encryption techniques

Homomorphic encryption makes it possible to calculate within the encrypted
domain. It therefore makes sense to assume it is suitable to search in encrypted
data. However, our research did not result in one search technique with only
advantages. Instead, we presented several techniques; all with their own advan-
tages and disadvantages.

PIR has been used as a starting point. PIR hides the query and the answer
to the database system. PIR already has two of the three ingredients for a

108 6. CONCLUSIONS AND FUTURE WORK

fully privacy aware database. Only the stored data is in the clear. In chapter 4
the stored data is encrypted too. Standard PIR does not work with encrypted
data. That is to say, it can retrieve encrypted values if you know where they
are stored. It is not possible, however, to search for a value if the location is
not known. Therefore some extensions to PIR have been proposed. As said, no
extension is perfect. But some of them are useful in some situations.

One class of extensions uses a bit map, which is a list of zeros and ones,
where the ones represent the values that are in the database and the zeros
that are not. For sparse databases (i.e. only a small number of all the possi-
ble values is stored) this is somewhat inefficient, but for dense databases (i.e.
almost every possible value is stored) it is more efficient. The bit map is en-
crypted with a semantic secure encryption algorithm. A PIR method has been
described to query this encrypted bit map. Transmitting a query is expensive.
Several techniques can reduce the transmission costs. Range queries shorten the
transmitted vectors but leak some information about the data. Preloading the
server with query vectors is efficient in terms of needed bandwidth, but enables
an attacker to discover duplicate queries. Detection of duplicate queries can
be made impossible at the cost of more transmission. To reduce storage costs,
query templates can be stored instead of the query vectors itself. The more
templates are stored the shorter the queries can be. In summary we can say
that the user has some means of tuning the system. He has to find the balance
between security, storage space and transmission costs.

Another class of extensions stores the values as separate entities. In con-
trast with the bit maps, more data values means more storage space, which is
a more natural behaviour for a database. The most ideal solution assumes a
homomorphic encryption algorithm that can do multiple multiplication and a
single addition within the encrypted domain. It is still an open question whether
such an algorithm really exists. Therefore, this extension has no practical rel-
evance yet. Another extension in this class represents the values in one large
polynomial of which the coefficients are encrypted. Querying this polynomial is
efficient. Updates, however, are much less efficient. The whole database should
be re-encrypted for every modification.

In summary: using homomorphic encryption to extend PIR schemes is pos-
sible in theory, but further research is needed to make it usable in practice.

6.2.6 Search solutions compared

We have seen several strategies to search in encrypted data. It depends on the
context which one is the best. The context consists of the architecture, the

6.2. SEARCH TECHNIQUES 109

structure of the data, the complexity of the queries and the preferred balance
between security and efficiency.

Architecture The kind of devices and the way they are connected to each
other influences the choice for a particular search technique. If both client
and server are fast devices and they are connected by a fast network, all the
techniques described in this thesis can be used.

SWP (with or without our tree extension) is the best solution when the
network bandwidth is low. The query is a single search word with a trapdoor
and the answer is a list of locations. Both the technique of Hacıgümüş et al.
and our secret sharing scheme use more bandwidth because data is transmitted
for some nodes that are not in the result set.

For lightweight clients SWP (with or without tree extension) is best, because
the workload is almost entirely on the server. Hacıgümüş et al. is also good
because the workload can be shifted to either the client or the server.

Data structure Data can be structured in several ways. We identify the
following data types, ordered by the degree of structure:

• set of objects/words/integers

• text of which the order of the words matter

• relational data

• tree data

If the data is organised as a set of unordered objects or an unstructured
text, it should be searched in its entirety. Due to a lack of structure, it is not
possible to skip parts of the data. Both the original SWP scheme and the various
homomorphic solutions search the entire database anyhow. Thus, for this kind
of data, both schemes are efficient enough. For more structured data, however,
searching through the entire database is much less efficient. It is most natural to
use Hacıgümüş et al. for data that is stored in a relational database and either
the tree extension of SWP or the secret sharing scheme for tree structured data.

Query complexity Closely related to the structure of the data is the query
complexity. The more structure the database has, the more complex the queries
can be. The queries in the homomorphic solutions and the original SWP scheme
are simple element lookups: check whether and where an element (a word or an

110 6. CONCLUSIONS AND FUTURE WORK

Table 6.1: Comparison of the different search strategies in terms of secu-
rity/linkability, storage/conmmunication costs and the workload on the server
and the client.

linkability costs workload
search method data query answer storage com. server client

Hacıgümüş - - - +/- +/- + +
SWP + - - + + - +
tree ext. SWP + - - + + + +
secr. sharing + - +/- + +/- + +/-
homom. enc. + + + - - - +/-

integer) occurs. The other 3 solutions (tree extension of SWP, Hacıgümüş et al.
and the secret sharing scheme) are based on more complex query languages like
SQL and XPath.

Balance between security and efficiency The presented solutions are not
equally secure. Most secure are the homomorphic encryption solutions. But,
unfortunately, they are also the least efficient. An attacker does not learn the
stored data (because the data is encrypted) nor the query and the answer (due
to the PIR method).

The most efficient solution is the index based solution of Hacıgümüş et al.
Unfortunately, this is also the least secure solution, since it suffers from linka-
bility. Records that are the same have equal hashes and therefore an attacker
learns with a certain probability which records are equal.

SWP suffer from linkability too, although in a lesser extent. With only the
stored data, an attacker is not able to find equal words, but if he sees an answer
to a query, he knows that the retrieved locations contain the same word.

With our secret sharing scheme the user can balance the security (i.e. the
linkability) and efficiency. When the client stops evaluating polynomials in a
certain branch in the XML tree, the server learns that the answer is not in the
skipped part of the tree. To improve security the client can therefore go on
evaluating polynomials in a branch the client already knows does not contain
the answer, just to mislead the server.

Table 6.1 summarises the comparison between the different search strategies.
A plus indicates a strength and a minus a weakness. With linkability we mean
the ability to relate one data element, query or answer to another. As we can

6.3. LONG TERM STORAGE 111

see, all strategies have weaknesses. Therefore, we cannot recommend a single
technique. The user should choose the technique that suits him most. His
choice depends on the given architecture, the complexity of the data and the
queries and his own judgement with regard to the balance between security and
efficiency.

6.3 Long term storage

Having a nice searchable encrypted database is one thing. Keeping it secure
over a longer period of time is another. Most encryption algorithms can be
broken given enough equipment and/or enough time. Simply trying all possible
keys will break the system sooner or (probably) later. In chapter 5 we use a
lucky dip as a secure data store. We use the inherent chaos in our favour. We
split messages into shares, throw them in the lucky dip and mix them with the
shares of other messages. The greater the chaos, the better the security. With
millions of shares we have a huge number of possible ways to recombine the
shares to messages. In fact there are so many ways that we will find messages
we can perfectly read but which have never been stored. It might even be
possible to find a piece of Shakespeare’s Hamlet in the financial administration
of a company.

An attacker with an unlimited supply of computers and no time limit, can
try all the possible recombinations. In the end he finds all the stored mes-
sages. However, those genuine messages are hidden between a huge number of
other messages. An attacker has no means to distinguish genuine messages and
messages that are found ‘by accident’.

6.4 Conclusion and future work

In the introductory chapter two research questions are formulated:

1. “Can we store private data securely on a database server, of which we
cannot rely on its access control mechanism, in such a way that it is
possible to search the data efficiently?”

2. “Can data be stored in such a way that it stays secure forever without
relying on computational assumptions?”

112 6. CONCLUSIONS AND FUTURE WORK

Both questions can be answered with a simple “yes”, although not all the
presented solutions are equally efficient. In a follow-up project we would like to
come up with more efficient search techniques without sacrificing the security.

In this thesis the focus is on searching in encrypted data, not querying over
encrypted data. In the same follow-up project we would like to extend the search
techniques to full query engines. Our current tools for searching in encrypted
XML documents, for instance, use XPath to find the desired elements. XQuery
goes one step further than XPath by generating a new document using the
found elements. Making this generated document secure and searchable as well,
is another research challenge. A full query engine should also support operators
like ‘greater than’ and ‘less than’ or fuzzy ones such as ‘like’ or ‘similar to’.
Ideas from the field of private fuzzy matching [23] may be used within the
secure database world as well.

Another interesting idea is to combine our long term storage with one of
the search techniques. Both our shared polynomial tree and our lucky dip use
secret sharing. Combining the two approaches may lead to a database system
that is searchable and secure for a longer period of time.

Ending this thesis does not mean that the research in the direction of search-
ing in encrypted data stops. In the contrary, this thesis has proven that this
research area is very interesting. We have proven that searching in encrypted
data is possible. The next step is to do it more efficient and more secure using
a more expressive query language.

Bibliography

Publications by the author

[1] R. Brinkman. Security, Privacy, and Trust in modern data management,
chapter Searching in encrypted data, pages 183–196. Data Centric Systems
and Applications. Springer Verlag, Berlin, May 2007.

[2] R. Brinkman, J. M. Doumen, P. H. Hartel, and W. Jonker. Using secret
sharing for searching in encrypted data. In W. Jonker and M. Petković,
editors, Secure Data Management VLDB 2004 workshop, volume LNCS
3178, pages 18–27, Toronto, Canada, August 2004. Springer-Verlag, Berlin.

[3] R. Brinkman, J. M. Doumen, W. Jonker, and B. Schoenmakers. Method of
and device for querying of protected structured data. US patent application
04102375.5, May 2004.

[4] R. Brinkman, L. Feng, J. M. Doumen, P. H. Hartel, and W. Jonker. Effi-
cient tree search in encrypted data. Information Systems Security Journal,
13(3):14–21, July 2004.

[5] R. Brinkman and J.H. Hoepman. Secure method invocation in Jason.
In USENIX Smart Card Research and Advanced Application Conference
(CARDIS), pages 29–40, San Jose, CA, USA, November 2002.

[6] R. Brinkman, S. Maubach, and W. Jonker. Secure storage system and
method for secure storing. European patent application EP06113192.6,
April 2006.

[7] R. Brinkman, B. Schoenmakers, J. M. Doumen, and W. Jonker. Experi-
ments with queries over encrypted data using secret sharing. In W. Jonker

113

114 BIBLIOGRAPHY

and M. Petković, editors, Secure Data Management VLDB 2005 workshop,
volume LNCS 3674, pages 33–46, Trondheim, Norway, Sep 2005. Springer-
Verlag, Berlin.

[8] R. van Rein and R. Brinkman. Home-grown case tools with XML and
XSLT. In Int. Workshop on Model Engineering (IWME), pages 105–112,
Sophia Antipolis, France, June 2000.

Other references

[9] R. Agrawal, J. Kieman, R. Srikant, and Y. Xu. Order-preserving encryption
for numeric data. In Proc. of the ACM SIGMOD 2004 Conference, Paris,
France, June 2004.

[10] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key
encryption with keyword search. In Advances in Cryptology, Eurocrypt,
pages 506–522. Springer Verlag, Berlin, 2004.

[11] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on
ciphertexts. In Theory of Cryptography: Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, Feb 2005. Springer Verlag.

[12] Jung Hee Cheon and Hyun Soo Nam. Known-plaintext cryptanalysis of
the Domingo-Ferrer algebraic privacy homomorphism scheme. Information
Processing Letters, 97(3):118–123, Feb. 2006.

[13] B. Chor and N. Gilboa. Computationally private information retrieval
(extended abstract). In Proceedings of the twenty-ninth ACM Symposium
on the Theory of Computing, pages 304–313, El Paso, Texas, United States,
1997.

[14] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information
retrieval. Journal of the ACM, 45(6):965–981, November 1998.

[15] E. Damiani, S. de Capitani di Vimercati, S. Paraboschi, and P. Samarati.
Computing range queries on obfuscated data. In Proc. of IPMU 2004,
Perugia, Italy, 2004.

[16] E. Damiani, S. De Capitani di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati. Balancing confidentiality and efficiency in untrusted relational

BIBLIOGRAPHY 115

DBMSs. In Proc. of the 10th ACM Conference on Computer and Commu-
nications Security, pages 93–102, Washington, DC, USA, October 2003.
ACM Press New York, NY, USA.

[17] W. Diffie and M. Hellman. New directions in cryptography. IEEE Trans-
actions on Information Theory, 22(6):644–654, Nov 1976.

[18] Josep Domingo-Ferrer. A new privacy homomorphism and applications.
Information Processing Letters, 60(5):277–282, Dec 1996.

[19] Josep Domingo-Ferrer. A provably secure additive and multiplicative pri-
vacy homomorphism. In ISC’2002, volume LNCS 2433, pages 471–483.
Springer-Verlag, Berlin, Sep. 2002.

[20] Taher ElGamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Transactions on Information Theory, IT-
31(4):469–472, 1985.

[21] Ling Feng and Willem Jonker. Efficient processing of secured XML meta-
data. In Proceedings of Intl. Workshop on Security for Metadata, Catania,
Italy, Nov 2003.

[22] Edward Fredkin, Bolt Beranek, and Newman. Trie memory. Communica-
tions of the ACM, 3(9):490–499, September 1960.

[23] Michael J. Freeman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Advances in Cryptology - EUROCRYPT,
volume LNCS 3027, pages 1–19, April 2004.

[24] Craig Gentry and Zulfikar Ramzan. Automata, Languages and Program-
ming, volume 3580 of Lecture Notes in Computer Science, chapter Single-
Database Private Information Retrieval with Constant Communication
Rate, pages 803–815. Springer Verlag, 2005.

[25] Eu-Jin Goh. Secure indexes. Cryptology ePrint Archive, Report 2003/216,
2003.

[26] O. Goldreich. Foundations of Cryptography, volume 2. Cambridge Univer-
sity Press, May 2004. ISBN 0-521-83084-2.

[27] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28:270–299, 1984.

116 BIBLIOGRAPHY

[28] Torsten Grust. Accelerating XPath location steps. In Proceedings of the
21st ACM International Conference on Management of Data (SIGMOD
2002), pages 109–120. ACM Press, Madison, Wisconsin, USA, June 2002.

[29] Torsten Grust, Maurice van Keulen, and Jens Teubner. Staircase join:
Teach a relational DBMS to watch its (axis) steps. In Proceedings of the
29th Int’l Conference on Very Large Databases (VLDB 2003), Berlin, Ger-
many, Sep 2003.

[30] H. Hacıgümüş, B. Iyer, C. Li, and S. Mehrotra. SSQL: Secure SQL in an
insecure environment. VLDB journal, 2006.

[31] H. Hacıgümüş, B. Iyer, and S. Mehrotra. Efficient execution of aggregation
queries over encrypted relational databases. In Proc. of the 9th Interna-
tional Conference on Database Systems for Advanced Applications, Jeju
Island, Korea, March 2004.

[32] H. Hacıgümüş, Balakrishna R. Iyer, Chen Li, and Sharad Mehrotra. Ex-
ecuting SQL over encrypted data in the database service provider model.
In SIGMOD Conference, 2002.

[33] Hakan Hacıgümüş, Bala Iyer, and Sharad Mehrotra. Efficient execution of
aggregation queries over encrypted relational databases. In YoonJoon Lee,
Jianzhong Li, Kyu-Young Whang, and Doheon Lee, editors, Database Sys-
tems for Advanced Applications: 9th International Conference, DASFAA
2004, volume LNCS 2973, pages 125–136, Jeju Island, Korea, March 2003.
Springer Verlag, Berlin.

[34] William George Horner. A new method of solving numerical equations of
all orders, by continuous approximation. Philosophical Transactions of the
Royal Society of London, pages 308–335, Jul. 1819.

[35] E. Kushilevitz and R. Ostrovsky. Replication is not needed: single
database, computationally-private information retrieval. In IEEE Sym-
posium on Foundations of Computer Science, pages 364–373, 1997.

[36] P. Lin and K. S. Candan. Ensuring privacy of tree structured data and
queries from untrusted data stores. Information Systems Security Journal,
May/June 2004.

[37] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook
of Applied Cryptography. CRC Press, October 1996.

BIBLIOGRAPHY 117

[38] Gordon E. Moore. Cramming more components onto integrated circuits.
Electronics, 38(8), april 19 1965.

[39] Rafail Ostrosky. Foundations of cryptography. Lecture 8, March 2005.

[40] Pascal Paillier and David Pointcheval. Efficient public-key cryptosystems
provably secure against active adversaries. In Advances in cryptology -
AsiaCrypt, volume LNCS 1716, pages 165–179. Springer Verlag, Berlin,
1999.

[41] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical
Mathematics, 15(3):331–334, September 1975.

[42] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[43] A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu,
M. J. Carey, and R. Busse. The XML Benchmark Project. Techni-
cal Report INS-R0103, CWI, Amsterdam, The Netherlands, April 2001.
http://monetdb.cwi.nl/xml/index.html.

[44] Adi Shamir. How to share a secret. Communications of the ACM,
22(11):612–613, November 1979.

[45] C. E. Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–423 and 623–656, July and October 1948.

[46] Dawn Xiaodong Song, David Wagner, and Adrian Perrig. Practical tech-
niques for searches on encrypted data. In IEEE Symposium on Security
and Privacy, pages 44–55, 2000.

[47] World Wide Web Consortium (W3C). XML path language (XPath) version
1.0, Nov 1999. http://www.w3.org/TR/xpath.

[48] World Wide Web Consortium (W3C). Xquery 1.0: An XML query lan-
guage, Jan 2007. http://www.w3.org/TR/xquery/.

[49] David Wagner. In Information Security, volume LNCS 2851, pages 234–
239. Springer-Verlag, Berlin, 2003.

[50] B. Waters, D. Balfanz, G. Durfee, , and D. K. Smetters. Building an
encrypted and searchable audit log. In Network and Distributed Security
Symposium (NDSS) ’04, San Diego, California, 2004.

http://monetdb.cwi.nl/xml/index.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/

Index

access control, 2, 3
aggregate function, 7

B+ tree, 7, 51, 55
benchmark, 18, 52
block cipher, 17
Boneh-Goh-Nissim, 70
brute force attack, 90

collision, see hash collision
computational complexity, 90

database, 24

ElGamal, 67
entropy, see Shannon entropy
experiments, 18, 29, 54

frequency analysis, 7

Goldwasser-Micali, 68

hash collision, 18
homomorphic encryption, 66

implementation, 17, 28, 50
index, 4, 8, 104

keyword, 8

labeling, 91
lucky dip, 89

Moore’s law, 90

one-time pad, 90

Paillier, 69
PIR, 9, 65, 72, 92
polynomial, 35, 39, 84
privacy homomorphism, see homomor-

phic encryption
private information retrieval, see PIR
pseudo-random bit generator, 14, 35,

37, 52
pseudo-random function, 17

random generator, see pseudo-random
bit generator

relation database, 104
relational database, 4, 24, 28
remote method invocation, 52
retrieval, 17, 27, 41
RSA, 67

SAX parser, 28, 51
search, 15, 27, 37
secret sharing, 8, 91, 107
secure multi-party computation, 36
seed, 51, 52
SHA-1, 18
Shannon entropy, 97
SQL, 6
storage, 14, 26, 37, 91

118

INDEX 119

threat model, 93
trapdoor encryption, 8, 105
tree, 24, 31, 39
trie, 48

XML, 18, 24
XPath, 24, 42
XQuery, 24

Titles in the IPA Dissertation Series since 2002

M.C. van Wezel. Neural Networks
for Intelligent Data Analysis: theo-
retical and experimental aspects. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2002-01

V. Bos and J.J.T. Kleijn. For-
mal Specification and Analysis of In-
dustrial Systems. Faculty of Math-
ematics and Computer Science and
Faculty of Mechanical Engineering,
TU/e. 2002-02

T. Kuipers. Techniques for Un-
derstanding Legacy Software Systems.
Faculty of Natural Sciences, Mathe-
matics and Computer Science, UvA.
2002-03

S.P. Luttik. Choice Quantification
in Process Algebra. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2002-04

R.J. Willemen. School Timetable
Construction: Algorithms and Com-
plexity. Faculty of Mathematics and
Computer Science, TU/e. 2002-05

M.I.A. Stoelinga. Alea Jacta Est:
Verification of Probabilistic, Real-
time and Parametric Systems. Fac-
ulty of Science, Mathematics and
Computer Science, KUN. 2002-06

N. van Vugt. Models of Molecular
Computing. Faculty of Mathematics
and Natural Sciences, UL. 2002-07

A. Fehnker. Citius, Vilius,
Melius: Guiding and Cost-Optimality

in Model Checking of Timed and Hy-
brid Systems. Faculty of Science,
Mathematics and Computer Science,
KUN. 2002-08

R. van Stee. On-line Scheduling and
Bin Packing. Faculty of Mathematics
and Natural Sciences, UL. 2002-09

D. Tauritz. Adaptive Information
Filtering: Concepts and Algorithms.
Faculty of Mathematics and Natural
Sciences, UL. 2002-10

M.B. van der Zwaag. Models and
Logics for Process Algebra. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2002-11

J.I. den Hartog. Probabilistic Ex-
tensions of Semantical Models. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2002-12

L. Moonen. Exploring Software Sys-
tems. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2002-13

J.I. van Hemert. Applying Evo-
lutionary Computation to Constraint
Satisfaction and Data Mining. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2002-14

S. Andova. Probabilistic Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU/e. 2002-15

Y.S. Usenko. Linearization in
µCRL. Faculty of Mathematics and
Computer Science, TU/e. 2002-16

J.J.D. Aerts. Random Redundant
Storage for Video on Demand. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2003-01

M. de Jonge. To Reuse or To
Be Reused: Techniques for compo-
nent composition and construction.
Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA.
2003-02

J.M.W. Visser. Generic Traversal
over Typed Source Code Representa-
tions. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2003-03

S.M. Bohte. Spiking Neural Net-
works. Faculty of Mathematics and
Natural Sciences, UL. 2003-04

T.A.C. Willemse. Semantics and
Verification in Process Algebras with
Data and Timing. Faculty of Mathe-
matics and Computer Science, TU/e.
2003-05

S.V. Nedea. Analysis and Simula-
tions of Catalytic Reactions. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2003-06

M.E.M. Lijding. Real-time
Scheduling of Tertiary Storage. Fac-
ulty of Electrical Engineering, Math-
ematics & Computer Science, UT.
2003-07

H.P. Benz. Casual Multimedia Pro-
cess Annotation – CoMPAs. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2003-08

D. Distefano. On Modelchecking
the Dynamics of Object-based Soft-
ware: a Foundational Approach. Fac-
ulty of Electrical Engineering, Math-
ematics & Computer Science, UT.
2003-09

M.H. ter Beek. Team Automata
– A Formal Approach to the Model-
ing of Collaboration Between System
Components. Faculty of Mathematics
and Natural Sciences, UL. 2003-10

D.J.P. Leijen. The λ Abroad –
A Functional Approach to Software
Components. Faculty of Mathematics
and Computer Science, UU. 2003-11

W.P.A.J. Michiels. Performance
Ratios for the Differencing Method.
Faculty of Mathematics and Com-
puter Science, TU/e. 2004-01

G.I. Jojgov. Incomplete Proofs and
Terms and Their Use in Interactive
Theorem Proving. Faculty of Mathe-
matics and Computer Science, TU/e.
2004-02

P. Frisco. Theory of Molecular Com-
puting – Splicing and Membrane sys-
tems. Faculty of Mathematics and
Natural Sciences, UL. 2004-03

S. Maneth. Models of Tree Trans-
lation. Faculty of Mathematics and
Natural Sciences, UL. 2004-04

Y. Qian. Data Synchronization and
Browsing for Home Environments.
Faculty of Mathematics and Com-
puter Science and Faculty of Indus-
trial Design, TU/e. 2004-05

F. Bartels. On Generalised Coin-
duction and Probabilistic Specifica-
tion Formats. Faculty of Sciences, Di-
vision of Mathematics and Computer
Science, VUA. 2004-06

L. Cruz-Filipe. Constructive Real
Analysis: a Type-Theoretical Formal-
ization and Applications. Faculty of
Science, Mathematics and Computer
Science, KUN. 2004-07

E.H. Gerding. Autonomous Agents
in Bargaining Games: An Evolu-
tionary Investigation of Fundamen-
tals, Strategies, and Business Appli-
cations. Faculty of Technology Man-
agement, TU/e. 2004-08

N. Goga. Control and Selection
Techniques for the Automated Test-
ing of Reactive Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2004-09

M. Niqui. Formalising Exact Arith-
metic: Representations, Algorithms
and Proofs. Faculty of Science, Math-
ematics and Computer Science, RU.
2004-10

A. Löh. Exploring Generic Haskell.
Faculty of Mathematics and Com-
puter Science, UU. 2004-11

I.C.M. Flinsenberg. Route Plan-
ning Algorithms for Car Navigation.

Faculty of Mathematics and Com-
puter Science, TU/e. 2004-12

R.J. Bril. Real-time Scheduling for
Media Processing Using Condition-
ally Guaranteed Budgets. Faculty of
Mathematics and Computer Science,
TU/e. 2004-13

J. Pang. Formal Verification of Dis-
tributed Systems. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2004-14

F. Alkemade. Evolutionary Agent-
Based Economics. Faculty of Tech-
nology Management, TU/e. 2004-15

E.O. Dijk. Indoor Ultrasonic Posi-
tion Estimation Using a Single Base
Station. Faculty of Mathematics and
Computer Science, TU/e. 2004-16

S.M. Orzan. On Distributed Verifi-
cation and Verified Distribution. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2004-17

M.M. Schrage. Proxima - A
Presentation-oriented Editor for
Structured Documents. Faculty of
Mathematics and Computer Science,
UU. 2004-18

E. Eskenazi and A. Fyukov.
Quantitative Prediction of Quality
Attributes for Component-Based Soft-
ware Architectures. Faculty of Mathe-
matics and Computer Science, TU/e.
2004-19

P.J.L. Cuijpers. Hybrid Process Al-
gebra. Faculty of Mathematics and
Computer Science, TU/e. 2004-20

N.J.M. van den Nieuwelaar.
Supervisory Machine Control by
Predictive-Reactive Scheduling. Fac-
ulty of Mechanical Engineering,
TU/e. 2004-21

E. Ábrahám. An Assertional
Proof System for Multithreaded Java
-Theory and Tool Support- . Faculty
of Mathematics and Natural Sciences,
UL. 2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Experiments in Rights
Control - Expression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Fac-
ulty of Mathematics and Computing
Sciences, RUG. 2005-04

H.M.A. van Beek. Specification
and Analysis of Internet Applications.
Faculty of Mathematics and Com-
puter Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based Sys-
tem Architecting - A Systematic Ap-
proach to Developing Future-Proof
System Architectures. Faculty of
Mathematics and Computing Sci-
ences, TU/e. 2005-06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-
10

A.M.L. Liekens. Evolution of Fi-
nite Populations in Dynamic Envi-
ronments. Faculty of Biomedical En-
gineering, TU/e. 2005-11

J. Eggermont. Data Mining using
Genetic Programming: Classification
and Symbolic Regression. Faculty of
Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifi-
cation of Hybrid Systems using Sim-
ulation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for
the Structure of pi-Calculus Processes
with Replication. Faculty of Math-
ematics and Natural Sciences, UL.
2005-17

P. Zoeteweij. Composing Con-
straint Solvers. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2005-18

J.J. Vinju. Analysis and Trans-
formation of Source Code by Pars-
ing and Rewriting. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU.
2005-21

Y.W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Sys-
tems. Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffel-
ers. Formal Specification and Anal-
ysis of Hybrid Systems. Faculty of
Mathematics and Computer Science
and Faculty of Mechanical Engineer-
ing, TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of JML
programs. Faculty of Science, Math-
ematics and Computer Science, RU.
2006-08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of

Biomedical Engineering, TU/e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data
Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nonde-
terministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathe-
matics and Computer Science, VUA.
2006-13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Pro-
tocols. Faculty of Mathematics and
Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile
Channels for Exogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composi-
tion. Faculty of Mathematics and
Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time
reconfigurable Network-on-Chip for
streaming DSP applications. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2007-02

M. van Veelen. Considerations
on Modeling for Early Detection of
Abnormalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sci-
ences, RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Algebra.

Faculty of Natural Sciences, Mathe-
matics, and Computer Science, UvA.
2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2007-09

Stellingen behorende bij het proefschrift

getiteld ‘Searching in encrypted data’

R. Brinkman

01-06-2007

1. Hoewel we beveiliging en efficiëntie niet kunnen vergelij-
ken, moeten ze wel met elkaar in evenwicht zijn.

2. Door de tweede wet van de thermodynamica kan de chaos
en daarmee de veiligheid van de lucky dip alleen maar
toenemen.

3. Indien een encryptiefunctie een homomorfe eigenschap be-
zit, dan kan dit worden gezien als een zwakte van de en-
cryptiefunctie; toch kan deze zwakte de veiligheid juist
vergroten.

4. Onderling wantrouwen is een goede basis om een geheim
te delen.

5. Ook al wordt iedere slag tussen hackers en ontwikkelaars
van Digital Rights Management systemen gewonnen door

1

de hackers, toch zullen het niet de hackers zijn die de strijd
winnen.

6. De wereld bestaat uit 10 groepen mensen: zij die binair
kunnen rekenen en zij die dit niet kunnen.

7. Aangezien de beste ideeën ontstaan op het grensgebied van
diep nadenken en totale ontspanning moeten wetenschap-
pers verplicht worden hun werk periodiek te verruilen voor
ontspannende activiteiten.

8. Stress wordt niet veroorzaakt door het werk dat we doen,
maar door het werk dat blijft liggen.

9. Om de wetgeving consistenter te maken is het noodzakelijk
om naast de kopieerheffing op lege CD’s en MP3-spelers
ook verkeersboetes te gaan heffen bij de aanschaf van een
auto die harder kan rijden dan de maximum snelheid.

10. Om de klap op het lichaam van een vallende klimmer te
verkleinen, kan het gunstig zijn om de klimmer zover mo-
gelijk te laten vallen.

2

	Abstract
	Samenvatting
	Acknowledgements
	Introduction
	Problem statement
	Literature overview
	Using indices
	Using trapdoor encryption
	Using secret sharing
	Using homomorphic encryption

	Contributions

	Linear versus tree search
	Introduction
	Linear search strategy
	Implementation
	Experimental data
	Results

	Tree search strategy for XML documents
	Implementation
	Experimental data
	Results

	Benefits of using tree structure
	Conclusions
	Future work

	Using secret sharing to search in encrypted data
	Introduction
	Secure multi-party computation
	Searching in encrypted data
	Data representation
	Retrieval
	Trie enhancement

	Implementation
	MySQLEncode
	The filter implementation
	Query engines

	Experiments
	Encoding
	Query Engines
	Strictness

	Conclusions and future work
	Appendix: XMark's auction DTD

	Exploring cryptographic extensions to PIR
	Introduction
	Homomorphic encryption
	RSA
	ElGamal
	Goldwasser-Micali
	Paillier
	Boneh-Goh-Nissim
	Domingo-Ferrer

	Private information retrieval
	Cryptographic extensions to PIR
	Bit map
	Range queries
	Stored query vectors
	Stored query templates
	Replacement
	Shift
	Addition
	Dual homomorphic encryption
	Polynomial extension

	Conclusion and future work

	A lucky dip as a secure data store
	Introduction
	A lucky dip
	Data storage
	Private information retrieval in our setting
	Reusing shares
	Threat model
	Database operations

	Security aspects
	Entropy
	Difficulty of finding a message by an attacker
	Using compression
	Trade-off between security and efficiency

	Conclusion and future work

	Conclusions and future work
	Introduction
	Search techniques
	Hacigümüs et al.
	SWP
	Tree based extension of SWP
	Secret sharing technique
	Homomorphic encryption techniques
	Search solutions compared

	Long term storage
	Conclusion and future work

	Bibliography

